

Installation und Inbetriebnahme der Ladesteuerung EV Charge Control

Anwenderhandbuch

Anwenderhandbuch

Installation und Inbetriebnahme der Ladesteuerung EV Charge Control

UM DE EV-CC-AC1-M3-CBC-RCM-ETH, Revision 04

2020-09-17

Dieses Handbuch ist gültig für:

Bezeichnung	Revision	Artikel-Nr.
EV-CC-AC1-M3-CBC-RCM-ETH	1	1018701
EV-CC-AC1-M3-CBC-RCM-ETH-3G	1	1018702
EV-CC-AC1-M3-RCM-ETH-XP	0	1139449
EV-CC-AC1-M3-RCM-ETH-3G-XP	0	1139452

Inhaltsverzeichnis

1	Zu Ihrer Sicherheit .			5
		1.1	Bestimmungsgerechte Verwendung	5
		1.2	Sicherheitshinweise	5
		1.3	Stilllegung und Entsorgung	6
2	Eigenschaften der La	adeste	euerung	7
		2.1	Bestelldaten	8
		2.2	Technische Daten	8
		2.3	Konformitätserklärung nach 2014/53/EU	12
3	Anschlüsse, Anzeige	en und	Konfigurationsschalter	13
		3.1	Anschlüsse der Ladesteuerung	13
		3.2	Bedienelemente und Anzeigen	15
		3.3	Abmessungen	17
4	Montage und Inbetrie	ebnah	me	
		4.1	Tragschienenmontage	
			4.1.2 Demontage	
		4.2	Anschluss Versorgungsspannung	
		4.3	Anschluss Ladeschütz	21
		4.4	Anschluss Strommesswandler zur Fehlerstromerkennung	23
		4.5	Anschluss Fahrzeug-Ladestecker und Infrastruktur-Ladedose	24
			4.5.1 Fahrzeug-Ladestecker	24
			4.5.2 Infrastruktur-Ladedose	25
		4.6	Beschaltung der digitalen Eingänge	27
		4.7	Beschaltung der digitalen Ausgänge	29
		4.8	RS-485-Schnittstelle	
			4.8.1 Energiemessgerat anschließen	31
5	Mobilfunk-Schnittste	lle		35
6	Grundlagen Signalko	ontakte	e und Ladeabläufe	36
		6.1	Control-Pilot-Signal	
		6.2	Proximity-Signal (Proximity Plug)	41

EV Charge Control

7	OCPP-Backend-Anbi	ndung]	42
8	Statusanzeige und Ko	onfigu	ration über Webserver	46
		8.1	Verbindung zwischen PC und Ladesteuerung herstellen	46
		8.2	Registerkarte "Status"	47
		8.3	Registerkarte "Network" für Ethernet	52
		8.4	Registerkarte "Network" für Mobilfunk	54
		8.5	Registerkarte "Configuration"	57
		8.6	Registerkarte "Energy Meter"	60
		8.7	Registerkarte "Card Reader"	65
		8.8	Registerkarte "Remote Control"	67
9	Modbus-Beschreibun	g		70
		9.1	Modbus-Registerarten	70
		9.2	Registerzuordnung	71
		9.3	Funktionszuordnung Ein- und Ausgangsregister	90
A	Verzeichnisanhang			93
	-	A 1	Abbildungsverzeichnis	93
		A 2	Tabellenverzeichnis	95
		А З	Stichwortverzeichnis	97

1 Zu Ihrer Sicherheit

1.1 Bestimmungsgerechte Verwendung

Die Ladesteuerungen EV-CC-AC1-M3-CBC-RCM-ETH (-3G/-XP) sind ausschließlich für den Einsatz in Ladestationen für Elektrofahrzeuge nach IEC 61851-1 im Mode 3 geeignet. Die Ladestationen müssen permanent mit dem Stromnetz verbunden sein. Anderweitige Anwendungen sind nicht zulässig. Halten Sie die gültigen nationalen Anforderungen und Bestimmungen zum Aufbau von Ladestationen ein.

Achten Sie insbesondere auf den Einsatz von Ladesteckern bzw. Infrastruktur-Ladedosen nach IEC 62196.

Achten Sie auf eine entsprechende Umhausung, die den jeweils geltenden nationalen Anforderungen, z. B. der IEC 61439-7 entspricht. Berücksichtigen Sie bei der Auswahl der Umhausung die jeweiligen Umgebungsbedingungen (Temperaturen, Sonneneinstrahlung, Feuchtigkeit, Verschmutzung). Beachten Sie die in den technischen Daten ("Umgebungsbedingungen" auf Seite 11) angegebenen Grenzwerte und Anforderungen der Ladesteuerung. Legen Sie die Umhausung so aus, dass diese Anforderungen erfüllt werden.

Halten Sie beim Anschluss an das Stromnetz die gültigen nationalen und regionalen Anforderungen (z. B. IEC 60364-7-722) ein.

1.2 Sicherheitshinweise

WARNUNG: Inbetriebnahme nur durch Fachpersonal

Die Ladesteuerung darf nur von elektrotechnisch qualifiziertem Fachpersonal installiert, bedient und gewartet werden. Befolgen Sie die beschriebenen Installationsanweisungen. Halten Sie die Bestimmungen und die Sicherheitsvorschriften ein, die für das Errichten und Betreiben von Ladestationen für Elektrofahrzeuge gelten. Die sicherheitstechnischen Daten finden Sie in diesem Handbuch und in den Zertifikaten, also der Konformitätsbewertung und ggf. weiteren Approbationen.

Weitere Informationen finden Sie unter phoenixcontact.net/product/1018701

WARNUNG: Gefährliche Berührungsspannung

Sie dürfen das Gerät nur im spannungsfreien Zustand ein- und ausbauen und konfigurieren. Nehmen Sie das Gerät nur in einem geschlossenen Gehäuse in Betrieb, das vor elektrischem Schlag schützt.

Sehen Sie eine Trennvorrichtung zur Spannungsfreischaltung der Ladestation vor.

ACHTUNG: Elektrostatische Entladung

Elektrostatische Entladung kann Bauelemente beschädigen oder zerstören. Beachten Sie beim Umgang die notwendigen Sicherheitsmaßnahmen gegen elektrostatische Entladung (ESD) nach EN 61340-5-1 und IEC 61340-5-1.

Betrieb nur mit geeignetem Gehäuse

Nehmen Sie das Gerät nur in einem Gehäuse in Betrieb, das die Anforderungen an Ladestationen erfüllt. Betreiben Sie das Gerät nur mit einem ausreichenden Gehäuse.

Die Schutzart IP20 (IEC 60529/EN 60529) des Geräts ist für eine saubere und trockene Umgebung vorgesehen. Setzen Sie das Gerät nur in einer Umgebung ein, die einen Verschmutzungsgrad von höchstens 2 nach IEC 60664-1 aufweist.

Wenn das Gerät für eine Ladeinfrastruktur mit Freiluftnutzung vorgesehen ist, dann können Sie Verschmutzungsgrad 2 in der Mikroumgebung z. B. durch ein Gehäuse der Schutzart IP5X nach IEC 60529 erreichen.

Setzen Sie das Gerät keiner Beanspruchung aus, die die beschriebenen Grenzen überschreitet.

Öffnen oder Verändern des Geräts ist unzulässig

Das Öffnen oder Verändern des Geräts über die Konfiguration hinaus ist nicht zulässig. Reparieren Sie das Gerät nicht selbst, sondern ersetzen Sie es durch ein gleichwertiges Gerät. Nur der Hersteller darf das Gerät reparieren.

1.3 Stilllegung und Entsorgung

Stilllegung

Zur Stilllegung müssen Sie das Gerät von der Netzspannung trennen. Demontieren Sie das Gerät nur im spannungsfreien Zustand.

Sehen Sie eine Trennvorrichtung zur Spannungsfreischaltung der Ladestation vor.

Entsorgung

Entsorgen Sie das Gerät nicht im Hausmüll, sondern nach den national gültigen Vorschriften.

2 Eigenschaften der Ladesteuerung

Die Ladesteuerung EV Charge Control dient der Steuerung und Überwachung des Ladens von Elektrofahrzeugen am Wechselstromnetz im Mode 3 nach IEC 61851-1. Sie wird in eine definierte Ladeinfrastruktur integriert, die fest an das Stromnetz angeschlossen ist. Sie überwacht die Signale **Control Pilot** und **Proximity Plug** nach IEC 61851-1.

Die Ladesteuerung steuert zustandsabhängig das Schaltelement mit dem die Verbindung zwischen Stromnetz und Elektrofahrzeug hergestellt wird. Sie ist mit einem Differenzstromsensor ausgestattet, der den Ladevorgang bei Auftreten von DC-Fehlerströmen unterbricht.

Die Ladesteuerung kann die Verriegelung des Ladesteckers in der Ladestation statusabhängig aktivieren oder deaktivieren. Sie verfügt über eine serielle Schnittstelle, über die Sie Energiemessgeräte und RFID-Kartenleser anschließen können.

Außerdem gibt es die Ladesteuerung je nach Ausführung mit Ethernet- oder 3G-Mobilfunk-Schnittstellen. Über eine OCPP-Schnittstelle kann die Ladesteuerung mit einem zentralen Managementsystem kommunizieren (über OCPP 1.6J, JSON).

Ladesteuerung	Kommunikation		OCPP 1.6J-Kommunikation	
	Ethernet	Mobilfunk	Ethernet	Mobilfunk
EV-CC-AC1-M3-CBC-RCM-ETH	х	-	-	-
EV-CC-AC1-M3-CBC-RCM-ETH-3G	х	х	-	х
EV-CC-AC1-M3-RCM-ETH-XP	х	-	х	-
EV-CC-AC1-M3-RCM-ETH-3G-XP	х	х	х	х

Sie können mehrere Ladesteuerungen zu einem Master-Slave-Verbund zusammenfassen. Dieser Verbund kann über den Master mit dem zentralen Managementsystem über das OCPP-Protokoll kommunizieren.

Technische Merkmale

- Auswertung und Ansteuerung des Control-Pilot-Signals nach IEC 61851-1
- Auswertung des Proximity-Signals nach IEC 61851-1
- Zu- und Abschaltung des Ladestroms zum Fahrzeug
- Fehlerstromerkennung 6 mA DC/30 mA AC und automatische Abschaltung im Fehlerfall
- Ansteuerung der Verriegelung des Ladesteckers und automatische Freigabe bei Spannungsunterbrechung
- RS-485-Kommunikationsschnittstelle/Modbus RTU (Master) zum Anschluss von Energiemessgerät und RFID-Kartenleser
- Ethernet-Schnittstelle (Modbus/TCP) zur Konfiguration, Fernsteuerung und Statusabfragen
- OCPP-Verbindung (OCPP 1.6J, JSON) über Mobilfunk- oder Ethernet-Schnittstelle
- Master-Slave-Verbund zur Anbindung mehrerer Ladesteuerungen über eine OCPP-Verbindung
- Integriertes Lastmanagement im Master-Slave-Verbund zum Schutz der Infrastruktur vor Überlastung
- Maximaler Ladestrom konfigurierbar: 6 A ... 80 A

- Optionale Überwachung der Ladeströme
- Digitale Ein- und Ausgänge, konfigurierbar
- Temperaturbereich: -25 °C ... +60 °C
- Einfache Konfiguration direkt am Gerät und über einen integrierten Webserver

2.1 Bestelldaten

Beschreibung	Тур	Artikel-Nr.	VPE
Ladesteuerung Mode 3, zum Laden von Elektrofahr- zeugen nach IEC 61851-1 für den Ladefall B und C mit integrierter DC-Fehlerstromüberwachung und Ethernet- Kommunikationsschnittstelle	EV-CC-AC1-M3-CBC-RCM- ETH	1018701	1
Ladesteuerung Mode 3, zum Laden von Elektrofahr- zeugen nach IEC 61851-1 für den Ladefall B und C mit integrierter DC-Fehlerstromüberwachung, Ethernet- und 3G-Mobilfunk-Schnittstelle, OCPP-1.6J-Kommunikation über Mobilfunk	EV-CC-AC1-M3-CBC-RCM- ETH-3G	1018702	1
Ladesteuerung Mode 3, zum Laden von Elektrofahr- zeugen nach IEC 61851-1 für den Ladefall B und C mit integrierter DC-Fehlerstromüberwachung, Ethernet- und 3G-Mobilfunk-Schnittstelle, OCPP-1.6J-Kommunikation über Ethernet	EV-CC-AC1-M3-RCM-ETH- XP	1139449	1
Ladesteuerung Mode 3, zum Laden von Elektrofahr- zeugen nach IEC 61851-1 für den Ladefall B und C mit integrierter DC-Fehlerstromüberwachung, Ethernet- und 3G-Mobilfunk-Schnittstelle, OCPP-1.6J-Kommunikation über Ethernet und Mobilfunk	EV-CC-AC1-M3-RCM-ETH- 3G-XP	1139452	1

2.2 Technische Daten

Allgemeine Daten	
Abmessungen	161,6 mm x 90 mm x 61 mm
Gewicht	460 g
Spannungsversorgung	
Nennspannung	230 V AC
Toleranz	±10 %
Netzfrequenz	50 / 60 Hz
Leistungsaufnahme, maximal	10 W
Leistungsaufnahme, Leerlauf	< 3 W

Fahrzeugschnittstelle / Infrastruktur-Ladedose	
Anzahl Fahrzeugschnittstellen	1
Lademodus und -fall	Modus 3, Fall B und C
Control Pilot	IEC 61851-1, Edition 3, Annex A
Proximity	IEC 61851-1, Edition 3, Annex B
Ausgangsspannung zur Ansteuerung des Verriegelungsaktuators (Quellenwiderstand 2 Ω)	12 V
Maximaler Strom für Verriegelungsansteuerung	1 A
Einstellbare Ansteuerzeit für Verriegelungsaktuator	500 ms (Default), max 3 s
Rückmeldesignal der Verriegelung	Potenzialfreier Kontakt, geschlossen bei erfolgreicher Ver- riegelung
Verhalten der Verriegelung bei Stromausfall	Automatische Entriegelung
Relaisausgang Schützansteuerung	
Standard	IEC 61810-1
Schaltkapazität	4000 VA
Schaltspannung, maximal	250 V AC
Maximaler Strom	16 A
Schaltzyklen	50000
Fehlerstromüberwachung	
Bemessungsfrequenz	0 Hz 2000 Hz
Messbereich	±300 mA
Ansprechwerte der Messsensorik	
Differenzstrom Id1, $I_{\Delta n1}$	6 mA DC
Differenzstrom Id2, $I_{\Delta n2}$	30 mA AC
Ansprechzeit t _{ae} (für DC oder > 15 Hz), für	
1 x I _{Δn}	< 180 ms
2 x I _{Δn}	< 70 ms
5 x I _{∆n}	< 20 ms
Messstromwandler	
Durchmesser Kabeldurchführung Messstromwandler	15 mm
Länge Anschlusskabel	0,2 m
Anschluss an Hauptgerät (Steckverbinder)	6-polig
Laststrom, maximal	Maximal 3 x 32 A (4 x 6 mm ²)
Normen	IEC 60364-7-722
	IEC 62752
	DIN VDE 0100-722 (VDE 0100-722:2013-01)

EV Charge Control

Digitale Eingänge	
Anzahl	5
Eingangsnennspannung	12 V
Eingangswiderstand	3 kΩ
Eingangsspannungsbereich	< 3 V (Aus) / > 9 V (Ein)

Digitale Ausgänge	
Anzahl	4
Ausgangsspannung, Einspeisung über 12 V	8 V 30 V
Maximaler Ausgangsstrom pro Ausgang, externe Ein- speisung	600 mA
Maximaler Ausgangsstrom gesamt, interne 12-V-Ein- speisung	200 mA

RS-485-Schnittstelle (RFID und Energiemessgerät)	
Protokoll	Modbus/RTU
Übertragungsrate	4,8 kBit/s bis 115,2 kBit/s, einstellbar
Übertragungsmodus (Datenbit, Stoppbit, Parität)	8, N, 2

Ethernet-Schnittstelle 100Base-TX nach IEEE 802.3u / 10Base-T nach IEEE 802.3		
Anschlussart	RJ45-Buchse	
Protokoll	Modbus/TCP	
	EV-CCXP: OCPP1.6J (Websockets)	
Übertragungsrate	10/100 MBit/s	
Übertragungslänge	100 m	

Mobilfunk-Schnittstelle (nur EV-CC-AC1-M3-CBC-RCM-ETH-3G und ...3G-XP)

Frequenzbänder	
HSPA	900 MHz, 2100 MHz
GSM/GPRS/EDGE	850 MHz, 900 MHz, 1800 MHz, 1900 MHz
Maximale Sendeleistung	
UMTS/HSPA	+24 dBm (Power Class 3)
GSM 850	Class 4 (2 W)
GSM 950	Class 4 (2 W)
GSM 1800	Class 1 (1 W)
GSM 1900	Class 1 (1 W)
Protokoll	OCPP 1.6J (WebSockets)
SIM-Karte	Micro-SIM
Antennenanschluss	SMA

Anschlussdaten für Spannungsversorgung, Leistungsr	elais, CP, PP, Verriegelung
Anschlussart	
Leiterquerschnitt starr min. / max.	0,2 mm ² 4 mm ²
Leiterquerschnitt flexibel min. / max.	0,2 mm ² 2,5 mm ²
Leiterquerschnitt flexibel mit Aderendhülse ohne Kunststoff- hülse min. / max.	0,25 mm² 1,5 mm²
Leiterquerschnitt flexibel mit Aderendhülse mit Kunststoff- hülse min. / max.	0,25 mm² 1,5 mm²
Leiterquerschnitt AWG	AWG 24 12
Anschlussdaten für digitale Ein- und Ausgänge und RS	-485
Anschlussart	
Leiterquerschnitt starr min. / max.	0,14 mm ² 1,5 mm ²
Leiterquerschnitt flexibel min. / max.	0,14 mm ² 1 mm ²
Leiterquerschnitt flexibel mit Aderendhülse ohne Kunststoff- hülse min. / max.	0,25 mm² 0,5 mm²
Leiterquerschnitt flexibel mit Aderendhülse mit Kunststoff- hülse min. / max.	$0,25 \text{ mm}^2 \dots 0,5 \text{ mm}^2$
Leiterquerschnitt AWG	AWG 26 16
Umgebungsbedingungen	
Schutzart	IP20
Umgebungstemperaturbereich (Betrieb)	-25 °C +60 °C
Umgebungstemperaturbereich (Lagerung)	-40 °C +85 °C
Luftfeuchtigkeit	30 % 95 %, nicht kondensierend
Überspannungskategorie / Verschmutzungsgrad	II / 2 (IEC 60664-1)
Höhenlage (Lagerung/Betrieb)	< 2000 m
Einbaulage	beliebig
Konformität / Zulassungen	
CE-konform	
Niederspannungsrichtlinie	2014/35/EU
Funktions- und Sicherheitsprüfung	IEC 60950-1 / EN 60950-1
Luft- und Kriechstrecken	IEC 60950-1 / EN 60950-1
Gehäuse Normenkonformität	DIN 43880

108191_de_04

Konformität zur EMV-Richtlinie 2014/108/EU			
Prüfung der Störfestigkeit nach EN 61000-6-2	Norm	Kriterium	Testbedingungen
Entladung statischer Elektrizität (ESD)	EN 61000-4-2	A	2 kV / 4 kV Kontaktentladung
			2 kV / 4 kV / 8 kV Luftentladung
Elektromagnetisches HF-Feld	EN 61000-4-3	А	80 MHz 1 GHz 10 V/m
			1,4 GHz 2 GHz 3 V/m
			2 GHz 2,7 GHz 1 V/m
Schnelle Transienten (Burst)	EN 61000-4-4	A	Netzeingang AC (L,N,PE)
			Datenleitungen LAN $0.5 \text{ kV} / 1 \text{ kV}$
Stoßstrombelastung (Surge)	EN 61000-4-5	Α	Netzeingang:
		<i>,</i> ,	1 kV / 2 kV unsymmetrisch:
			Leitung gegen Erde
			0,5 kV / 1 kV symmetrisch:
Leitungsgeführte Storgroßen	EN 61000-4-6	A	Frequenzbereich 150 kHz 80 MHz Spannung
			10 V, 80 % AM, 1 kHz
Störfestigkeit gegenüber Magnetfeldern mit Netz-	EN 61000-4-8	erfüllt	Prüfstörgröße:
frequenz			30 A/m, 50 Hz / 60 Hz
Störfestigkeit gegenüber Kurzunterbrechungen und	EN 61000-4-11		Netzzuleitung:
Spannungsschwankungen		A erfüllt	Reduktion für 20 ms
		A erfüllt	Reduktion für 200 ms
		A erfüllt	Reduktion für 500 ms
		C erfüllt	Reduktion für 5000 ms
Prüfung der Störaussendung nach EN 61000-6-3	Norm	Ergebnis	Testbedingungen
Funkstörspannung	EN 61000-6-3	erfüllt	Netzübergabepunkt 150 kHz 30 MHz
Funkstörspannung	EN 61000-6-3	erfüllt	Telekommunikationsanschlüsse 150 kHz 30 MHz
Funkstörfeldstärke	EN 61000-6-3	erfüllt	30 MHz 1 GHz
			1 GHz 6 GHz
Messung der niederfrequenten Oberschwingungs- ströme	EN 61000-6-2	erfüllt	Klasse A
Messung der Spannungsschwankungen und Flicker in Niederspannungsnetzen	EN 61000-6-3	erfüllt	Pst < 0,25

2.3 Konformitätserklärung nach 2014/53/EU

Hiermit erklärt Phoenix Contact, dass der Funkanlagentyp EV-CC-AC1-M3-CBC-RCM-ETH-3G der Richtlinie 2014/53/EU entspricht. Der vollständige Text der EU-Konformitätserklärung ist unter der folgenden Internetadresse verfügbar: <u>phoenixcontact.net/product/1018702</u>.

3 Anschlüsse, Anzeigen und Konfigurationsschalter

3.1 Anschlüsse der Ladesteuerung

Tabelle 3-1	Anschlüsse
	/ 11001110000

Nr.	Name	Bedeutung	Beschreibung		
1	C1	Contactor 1	Ansteuerung Lastschütz	230 V AC, 16 A	
	C2	Contactor 2			
	СТ	Contactor Test	Schützüberwachung, prüft das Ausgangssignal auf Spannungen nach Be- endigung des Ladevorgangs		
2	L	Line	Phase Stromnetz	230 V AC	
	Ν	Neutral	Neutralleiter Stromnetz		
	PE	Protective	Funktionserde mit Schutzerde verbunden		
	PE	Earth			
3	B Ethernet		RJ45-Buchse für Ethernet-Schnittstelle 100Base-TX		

EV Charge Control

Nr.	Name	Bedeutung	Beschreibung		
4	12 V	Power	Ausgang	12 V DC, max. 200 mA	
	LD	Lock Detection	Digitaler Eingang, konfigurierbar über Webserver oder Modbus	Default: Auswertung der Ver- riegelungsrückmeldung, Aktivierung über DIP D6	
	EN	Enable		Default: Freigabe Ladevorgang, Aktivierung über DIP D7	
	ML	Manual Lock		Default: Manuelle Verriegelung, Aktivierung über DIP D9	
	XR	External Release		Default: Verfügbarkeit Ladestation. Aktivierung über DIP D8	
	IN	Input		Default: Ladestrom 16 A	
	Α	RS-485 - A	Anschluss externer Energie-/Leistungsmessgeräte und RFID-Kartenleser mit		
	B RS-485 - B		Modbus/RTU-Protokoll		
	GND	Ground	Systemerde	Verbunden mit Schutzerde	
	CR	Charger Ready	Digitaler Ausgang, konfigurierbar über Webserver oder Modbus	Default: Wird gesetzt, wenn PWM ein- geschaltet ist	
	VR	Vehicle Ready		Default: Wird gesetzt, wenn das Fahr- zeug bereit ist (Status C oder D)	
	LR	Lock Request		Default: Wird gesetzt, solange die Ver- riegelung aktiv sein soll	
	ER	Error		Default: Wird gesetzt, wenn Fehler auf- treten (Status E oder Status F)	
	12a	Auxiliary Power	Speiseeingang der Ausgänge	8 V DC 30 V DC	
5	Residua	Current Monitoring	Dedizierter Anschluss für den mitgeliefe	erten Fehlerstromsensor	
6	SIM		Karten-Slot Micro-SIM für Mobilfunk		
7	R1	Retaining	Steuerspannung Verriegelungsaktor		
	R2				
	СР	Control Pilot	Pilotleitersignal	Kommunikation zwischen Ladestation und Fahrzeug nach IEC 61851-1	
	PX	Proximity	Prüfsignal	Stromtragfähigkeit des an- geschlossenen Ladesteckers und Ladekabels nach IEC 61851-1	
8	C3	Contactor 3	Relaisausgang, reserviert für zu-	230 V AC, 16 A	
	C4	Contactor 4	künftige Anwendungen		
9	Antenne		SMA-Antennenstecker für Mobilfunkanbindung		

Tabelle 3-1 Anschlüsse [...]

Weitere Informationen zu den Konfigurationsmöglichkeiten für die digitalen Ein- und Ausgänge finden Sie in "Statusanzeige und Konfiguration über Webserver" auf Seite 46.

3.2 Bedienelemente und Anzeigen

Anderungen an der E steuerung wirksam.

Tabelle 3-2	DIP-Schalter

Nr.	DIP	Name	Bedeutung		
	1	Proximity	ON	Proximity-Wert des Ladesteckers wird ausgewertet (Ladefall B)	
			OFF	Proximity-Wert des Ladesteckers wird nicht ausgewertet (Ladefall C)	
	2	Ladekabel abweisen	ON	Stecker/Kabel mit geringer Stromtragfähigkeit abweisen	
			OFF	Stecker/Kabel mit geringer Stromtragfähigkeit abweisen	
	3	Ladekabel abweisen	Nur re	elevant, wenn DIP 2 = ON	
			ON	13 A-Stecker/Kabel abweisen	
			OFF	13 A- und 20-A-Stecker/Kabel abweisen	
	4	Verriegelung	ON	Verriegelung Ladestecker ausführen	
		aktivieren	OFF	Verriegelung Ladestecker nicht ausführen	
	5	Reserviert für zu-	ON		
		künftige An- wendungen	OFF		
	6	Rückmeldung Ver- riegelung	ON	Rückmeldung Verriegelung über digitalen Eingang (Default: Eingang LD) aus- werten	
			OFF	Rückmeldung Verriegelung nicht auswerten	
	7	Freigabe	ON	Freigabe des Ladevorgangs über digitalen Eingang (Default: Eingang EN)	
		Ladevorgang	OFF	Freigabe des Ladevorgangs über digitalen Eingang nicht erforderlich	
	8	Verfügbarkeit Ladestation	ON	High-Signal am digitalen Eingang (Default: Eingang XR) erforderlich, sonst Status F, Ladestation nicht verfügbar	
			OFF	High-Signal am digitalen Eingang nicht erforderlich	
	9	Manuelle Ver- riegelung	ON	Manuelle Verriegelung durch High-Signal an digitalem Eingang (Default: Eingang ML)	
			OFF	Automatische Verriegelung im Status B, Fahrzeug angeschlossen	
	10	Freigabe über Ethernet	ON	Freigabe Ladevorgang und Verfügbarkeit Ladestation über Ethernet (Modbus/Webserver), RFID-Karte mit lokal gespeicherter Freigabeliste oder über ein OCPP-Backend	
			OFF	Freigabe Ladevorgang und Verfügbarkeit Ladestation über Ethernet (Modbus/Webserver) nicht erforderlich	

Tabelle 3-3 Anzeige-LED	Tabelle 3-3	Anzeige-LEDs
-------------------------	-------------	--------------

		0	
Nr.	Farbe	Bedeutung	
2	grün	Power	Blinkt, wenn die Ladesteuerung betriebsbereit ist
	rot	Error	Leuchtet bei Fehlern
	gelb	Connect	Blinkt, wenn gültiger Ladestecker erkannt ist. Ist permanent an, wenn der Ladestecker in der Ladedose verriegelt ist.
	grün	Ready	Blinkt 1 s: wenn Fahrzeug angeschlossen
			Blinkt 1/2 s: wenn Ladefreigabe erteilt (PWM-Signal an)
			Permanent: wenn Ladeschütz geschlossen
	rot / grün	Status	Rot: Keine Verbindung zum Server
	Modem		Grün: Verbindung zum Server vorhanden

Tabelle 3-4 Drehkodierschalter

Nr.	Position	Bedeutung	
3	0	PWM-Signal auf 5 %, notwendig für digitale Kommunikation	
	1	Maximalstrom 6 A	
	2	Maximalstrom 10 A	
	3	Maximalstrom 13 A	
	4	Maximalstrom 16 A	
	5	Maximalstrom 20 A	
	6	Maximalstrom 32 A	
	7	Maximalstrom 63 A	
	8	Maximalstrom 70 A	
	9	Maximalstrom 80 A	

Tabelle 3-5 Reset-Taster

Nr.	Name	Funktion	
4	Reset	Einfache Betätigung: Neustart des Geräts	
		Betätigung > 10 s: Zurücksetzen auf Werkseinstellungen	

3.3 Abmessungen

Bild 3-4

Abmessungen Messsensor

4 Montage und Inbetriebnahme

WARNUNG: Stromschlaggefahr

Schließen Sie die Ladesteuerung bzw. Ladestation nur in spannungsfreiem Zustand an die Versorgungsleitung an.

Berücksichtigen Sie bei der Installation des Geräts einen Leistungsschalter, der als Trennvorrichtung für dieses Gerät gekennzeichnet ist.

Der Leistungsschalter muss geeignet angeordnet und für den Benutzer leicht erreichbar sein.

Nur qualifiziertes Personal darf das Gerät aufbauen und in Betrieb nehmen. Das Personal muss mit den notwendigen Sicherheitsmaßnahmen vertraut sein. Halten Sie die entsprechenden Anforderungen zum Aufbau und Inbetriebnahme einer Ladeinfrastruktur, insbesondere die geltenden Sicherheitsbestimmungen ein.

ACHTUNG: Elektrostatische Entladung

Elektrostatische Entladung kann Bauelemente beschädigen oder zerstören. Beachten Sie beim Umgang die notwendigen Sicherheitsmaßnahmen gegen elektrostatische Entladung (ESD) nach EN 61340-5-1 und IEC 61340-5-1.

4.1 Tragschienenmontage

4.1.1 Montage

- Setzen Sie das Gerät von oben auf die Tragschiene.
- Drücken Sie das Gerät an der Front in Richtung der Montagefläche, bis es hörbar einrastet.

4.1.2 Demontage

- Ziehen Sie mit einem Schraubendreher, Spitzzange oder Ähnlichem die Arretierungslaschen nach unten.
- Winkeln Sie die Unterkante des Geräts etwas von der Montagefläche ab.
- Ziehen Sie das Gerät schräg nach oben von der Tragschiene ab.

4.2 Anschluss Versorgungsspannung

ACHTUNG: Gefahr einer Beschädigung des Geräts

Die Spannungsversorgung zum Gerät muss gegen Überstrom bis maximal 6 A gesichert sein.

• Schließen Sie die Versorgungsspannung über die Klemmen N, L und PE an das Gerät an. (Anschlussblock 1 siehe Bild 3-1 auf Seite 13).

4.3 Anschluss Ladeschütz

ACHTUNG: Gefahr einer Beschädigung des Geräts

- Die Spannungsversorgung zum Gerät muss gegen Überstrom bis maximal 16 A gesichert sein. Die Zuschaltung der Netzspannung zum Elektrofahrzeug muss über ein separates Leistungsschütz erfolgen, das die entsprechenden normativen Anforderungen erfüllt. Das direkte Schalten der Ladespannung über das Relais C1/C2 ist nicht zulässig.
- Schließen Sie das Ladeschütz über die Klemmen C1 und C2 an das Gerät an, siehe Bild 4-3 auf Seite 20 (Anschlussblock 3 siehe Bild 3-1 auf Seite 13).

Ladeschütz überwachen

Optional können Sie in einphasigen Ladestationen die Phase hinter dem Lastschütz mit dem Anschluss CT verbinden (siehe gestrichelte Linie in Bild 4-3 auf Seite 20). Wenn nach dem Beenden des Ladevorgangs am Ausgang des Lastschützes noch eine Spannung anliegt, wird dies erkannt. Die Konfiguration erfolgt über den Webserver (Registerkarte "Configuration") oder Modbus/TCP ("Modbus-Beschreibung" auf Seite 70).

In mehrphasigen Ladestationen kann das Ladeschützes über die Auswertung eines Hilfskontakts mit zwangsgeführten Kontakten überwacht werden (siehe Bild 4-4 auf Seite 21).

Führen Sie die 12-V-Spannung des Geräts über einen NC- (Normally Closed) oder NO-(Normally Open) Hilfskontakt auf einen freien digitalen Eingang.

- Weisen Sie dem entsprechenden Eingang die Funktion über den Webserver zu (siehe Registerkarte "Status").
- Aktivieren Sie die Schützüberwachung (siehe Registerkarte "Configuration").

Alternativ kann die Konfiguration auch über Modbus erfolgen (siehe "Modbus-Beschreibung" auf Seite 70).

Um das System nach einer detektierten Fehlfunktion des Lastschützes ausgangsseitig spannungsfrei zu schalten, kann ein digitaler Ausgang auf das Ereignis "Contactor Failure" konfiguriert werden (siehe Registerkarte "Status", Registerkarte "Configuration" oder "Modbus-Beschreibung" auf Seite 70).

Das Signal dieses Ausgangs kann dafür genutzt werden, ein redundantes Schaltelement zu öffnen oder die Zwangsauslösung des vorgelagerten Fehlerstrom-Schutzschalters herbeizuführen.

4.4 Anschluss Strommesswandler zur Fehlerstromerkennung

Bild 4-5 Anschluss Strommesswandler für Differenzstromüberwachung

- Verbinden Sie den mitgelieferten Messwandler mit der Ladesteuerung über den dafür vorgesehenen Stecker 6 (Bild 3-1 auf Seite 13).
- Führen Sie alle Phasen und Außenleiter sowie den Neutralleiter der Infrastruktur-Ladedose bzw. des Fahrzeug-Ladesteckers durch die Apertur des Messwandlers.
- Sie dürfen den Schutzleiter nicht durch den Messwandler führen. Bei einem Fehlerstrom > 6 mA DC oder > 30 mA AC wird der Ladevorgang beendet. Die Ladesteuerung geht in einen Fehlerzustand. Wenn das Fahrzeug von der Ladestation getrennt wird, wird der Fehlerzustand zurückgesetzt,

ACHTUNG: Typ A Fehlerstrom-Schutzschalter erforderlich

Die Fehlerstromerkennung entbindet nicht von der Verpflichtung, einen eigenen Fehlerstrom-Schutzschalter vom Typ A für die Ladestation vorzusehen.

4.5 Anschluss Fahrzeug-Ladestecker und Infrastruktur-Ladedose

4.5.1 Fahrzeug-Ladestecker

Bild 4-6 Ladefall C, Ladestation mit Fahrzeug-Ladestecker

- Für den Ladefall C verbinden Sie den Control-Pilot-Leiter des Ladesteckers mit dem CP-Anschluss (Anschlussblock 2, Bild 3-1 "Anschlüsse der Ladesteuerung") der Ladesteuerung.
- Für den Ladefall C setzen Sie am Konfigurationsschalter 1 (Bild 3-2 "Bedienelemente und Anzeigen") den DIP-Schalter #1 in die Position 0.

4.5.2 Infrastruktur-Ladedose

Bild 4-8

Anschluss Infrastruktur-Ladedose

 Für den Ladefall B verbinden Sie den Control-Pilot-Leiter der Infrastruktur-Ladedose mit dem CP-Anschluss. Verbinden Sie den Proximity mit dem PX-Anschluss der Ladesteuerung (Anschlussblock 2, Bild 3-1 "Anschlüsse der Ladesteuerung").

Die Verriegelungsfunktion der Infrastruktur-Ladedose wird über die Anschlüsse R1/R2 (Anschlussblock 2, Bild 3-1 auf Seite 13) angesteuert. Der Verriegelungsaktor wird über die Klemmen R1 und R2 für eine vorgegebene Dauer mit einer Spannung von 12 V und einer entsprechenden Polarität beaufschlagt. Wenn ein definierter Zustand erreicht ist, ist der Ausgang anschließend spannungsfrei. Die Schaltzeiten sind in den Werkseinstellungen auf die Infrastruktur-Ladedosen von Phoenix Contact abgestimmt. Für die Erkennung des Verriegelungszustands wird ein High-Signal am Eingang LD, z. B. durch einen potenzialfreien Kontakt erwartet. Die Infrastruktur-Ladedosen EV-T2M3SE12-... von Phoenix Contact verfügen über einen solchen potenzialfreien Kontakt. Ein geschlossener Kontakt zeigt dabei eine Verriegelung an. Verbinden Sie hierzu den potenzialfreien Kontakt mit den Anschlüssen 12 V und LD an Anschlussblock 5 (Bild 3-1 auf Seite 13).

Wenn nach einem Ver- bzw. Entriegelungsimpuls keine entsprechende Rückmeldung an LD gemessen wird, dann wird dieser Vorgang automatisch fünfmal wiederholt. Wenn keine Verriegelung detektiert wird, geht die Ladesteuerung in einen Fehlerzustand. Der Fehlerzustand wird über den Zustand A (kein Fahrzeug angeschlossen) wieder verlassen.

Für den Ladefall B ist am Konfigurationsschalter 1 (Bild 3-2 auf Seite 15), folgende Konfiguration notwendig:

- DIP-Schalter #1 = 1
- DIP-Schalter #4 = 1
- DIP-Schalter #6 = 1

Die Verriegelung startet in diesem Fall automatisch mit der Erkennung eines angeschlossenen Fahrzeugs (Übergang von Status A zu Status B). Die Entriegelung erfolgt mit der Trennung des Fahrzeugs von der Ladestation (Übergang von Status B zu Status A).

Optional kann die Verriegelung über einen digitalen Eingang oder Modbus bzw. den Webserver erfolgen. Setzen Sie dafür zusätzlich den **DIP-Schalter #9 = 1**. Wenn die Verriegelung über einen digitalen Eingang erfolgt, dann müssen Sie dem entsprechenden Eingang die Funktion über den Webserver (Registerkarte "Status") zuweisen. In den Werkseinstellungen ist hierfür der Eingang ML vorgesehen. Alternativ kann die Konfiguration auch über Modbus ("Modbus-Beschreibung" auf Seite 70) erfolgen.

4.6 Beschaltung der digitalen Eingänge

Die Eingänge sind als Spannungsteiler für eine Spannung von 0 V bis +12 V ausgelegt. Über das Widerstandsnetzwerk fließt ein Strom von < 4 mA bei 12 V.

Für die Auswertung ist eine Schalthysterese implementiert.

- Bei einer Spannung von 0 V bis +3 V wird sicher eine logische 0 erkannt.
- Bei einer Spannung von +9 V bis +15 V wird sicher eine logische 1 erkannt.

Die Beschaltungen der Eingänge sind nur Beispiele. Die Eingänge mit Schaltern können sowohl von der internen Spannungsquelle gespeist werden (siehe Bild 4-10) als auch von einer externen 12 V-Spannungsquelle, die GND als gemeinsamen Bezugspunkt nutzt (siehe Bild 4-11).

Die Eingänge können auch von einer externen, übergeordneten Steuerung mit 12 V-Ausgängen angesteuert werden. Auch hier wird GND als gemeinsamer Bezugspunkt genutzt.

Bild 4-10 Beschaltung der digitalen Eingänge, interne Versorgung

Bild 4-11 Beschaltung der digitalen Eingänge, externe Versorgung

Konfiguration der digitalen Eingänge

i

Sie können die digitalen Eingänge auf Funktionen konfigurieren, die von den Werkseinstellungen abweichen. Sie können die Ladesteuerung über den Webserver oder über Modbus/TCP konfigurieren.

Konfigurationsmöglichkeiten für die digitalen Ein- und Ausgänge finden Sie im Kapitel "Statusanzeige und Konfiguration über Webserver" auf Seite 46, ab Registerkarte "Status" bzw. unter "Modbus-Beschreibung" auf Seite 70.

4.7 Beschaltung der digitalen Ausgänge

Die Ausgänge schalten im Status 0 gegen GND und im Status 1 auf den Spannungseingang 12a. An dem Spannungseingang 12a kann eine Spannungsversorgung von 8 V bis 30 V DC angelegt werden.

Die Stromtragfähigkeit der Schalttransistoren beträgt maximal 600 mA. Wenn der Spannungseingang 12a über den Anschluss 12 V gespeist wird, dann stehen an allen Ausgängen in der Summe maximal 200 mA zur Verfügung.

Anschluss Verbraucher mit geringer Stromaufnahme (z. B. LEDs)

- Über den Spannungseingang 12a werden die Ausgangsstufen mit der notwendigen Spannung von 12 V DC aus dem Spannungsausgang 12 V versorgt.
- Der Spannungsausgang 12 V kann mit maximal 200 mA belastet werden.
- Die Ausgänge schalten im Status 0 (AUS) gegen GND und im Status 1 (AN) auf das Potenzial von 12a.
- GND ist intern mit PE verbunden.

Anschluss Verbraucher höherer Leistung (z. B. Lampen)

Über den Spannungseingang 12a werden die Ausgangsstufen mit der notwendigen Spannung von 8 V DC bis maximal 30 V DC versorgt.

Verbinden Sie den GND der externen Einspeisung mit dem GND der Ladesteuerung.

Die Ausgänge schalten im Status 0 (AUS) gegen GND und im Status 1 (AN) auf das Potenzial von 12a. GND ist intern mit PE verbunden.

ACHTUNG: Stromfestigkeit pro Ausgang beachten

Beachten Sie die maximale Stromfestigkeit von 600 mA pro Ausgang.

Bild 4-13 Beschaltung der digitalen Ausgänge, externe Einspeisung

Konfiguration der digitalen Ausgänge

Sie können die digitalen Ausgänge auf Funktionen konfigurieren, die von den Werkseinstellungen abweichen. Sie können die Ladesteuerung über den Webserver oder über Modbus/TCP konfigurieren.

Konfigurationsmöglichkeiten für die digitalen Ein- und Ausgänge finden Sie in dem Bild 8-1 auf Seite 47 bzw. in der Tabelle 9-2 auf Seite 71.

ACHTUNG: Mögliche Beschädigung der Transistoren

Schließen Sie auf keinem Fall eine Versorgungsspannung an die Ausgänge an. Einer der Transistoren ist immer angesteuert. Die Transistoren können dadurch zerstört werden.

Die Ausgänge sind nicht kurzschlussfest oder gegen Überlast geschützt.

4.8 RS-485-Schnittstelle

An die serielle Schnittstelle können Sie Energiemessgeräte und RFID-Kartenleser anschließen, die über eine RS-485-Schnittstelle verfügen und das Protokoll Modbus/RTU unterstützen. Bei einigen Geräten kann es notwendig sein, die Leitung mit einem Abschlusswiderstand von 120 Ohm zu terminieren.

4.8.1 Energiemessgerät anschließen

Werksseitig konfigurierte Energiemessgeräte

^J Ladesteuerung **bis Firmware 1.11** sind werksseitig auf dieses Energiemessgerät eingestellt: EEM-350-D-MCB, 2905849.

Ladesteuerung ab **Firmware 1.12** sind werksseitig auf dieses Energiemessgerät eingestellt: EEM-EM357, 2908588.

ACHTUNG: Umstellung der Anzeige von KWh auf Wh

Ab der **Firmware** 1.12 werden die Werte der **Energiemessgeräte** von den Ladesteuerungen in Wh angezeigt. Nach einem Firmware-Update auf 1.12 oder höher müssen Sie die Konfiguration der **Energiemessgeräte** manuell anpassen (auf der Registerkarte "Energy Meter").

Bis Firmware 1.11: EEM-350-D-MCB Bild 4-14

Anschluss des Energiemessgeräts EEM-350-D-MCB über RS-485

Ab Firmware 1.12: EEM-EM357 Bild 4-15

Anschluss des Energiemessgeräts EEM-EM357 über RS-485

Die Anbindung wird über den Webserver konfiguriert, siehe Registerkarte "Energy Meter". Stellen Sie die Kommunikationsparameter ein. Konfigurieren Sie für die Messdaten des Energiemessgeräts die Registeradressen, die Datenlänge sowie Umrechnungsfaktoren. Die Energiemessgeräte müssen Integer-Daten mit maximal zwei Datenworten im Format Little Endian oder Big Endian in Holding- bzw. Input-Registern bereitstellen. Die ausgelesenen Daten des Energiemessgeräts stehen dann über Modbus/TCP und über den Webserver zur Verfügung. Die Daten können mit dem OCPP-Protokoll an das zentrale Managementsystem weitergeleitet werden.

Es besteht die Möglichkeit, eine Überstromüberwachung zu aktivieren.

Bei einem Überstrom von I/Imax > 1,25 erfolgt die Abschaltung nach 10 s.

- Im Bereich 1,25 > I/Imax > 1,1 erfolgt die Abschaltung nach 100 s.
- Ströme von I/Imax < 1,1 werden toleriert.

Die Energiemessgeräte-Schnittstelle wird über den Webserver aktiviert und konfiguriert (siehe Registerkarte "Energy Meter") oder über Modbus (siehe "Modbus-Registerarten" auf Seite 70).

4.8.2 **RFID-Kartenleser anschließen**

Bild 4-16 Anschluss RFID-Kartenleser Quio QDE 950-4 über RS-485

DPHŒNIX CONTACT	
EV Charge Control EV-CC-AC1-M3-CBC-RCM IEC 61815-1, Mode 3	
OR BL BK	
RD	·

Um Nutzer zu identifizieren und um Ladevorgänge freizugeben, können Sie an die Modbus/RTU-Schnittstelle einen RFID-Kartenleser anschließen.

Sie können den RFID-Kartenleser über diese Wege konfigurieren:

- Webserver ("Registerkarte "Status"" auf Seite 47)
- Modbus/TCP ("Registerzuordnung" auf Seite 71)

In den Werkseinstellungen ist die Ladesteuerung für den RFID-Kartenleser QDE 950-4 der Firma Quio konfiguriert.

Für die Freigabe des RFID-Kartenlesers setzen Sie den DIP-Schalter #10 = 1.

Die Freigabe des Ladevorgangs kann nach Abgleich mit einer lokal gespeicherten Whitelist oder durch ein überlagertes Managementsystem erfolgen.

Prüfung gegen eine lokaleAuf der Ladesteuerung können bis zu 20 RFID-Unique Identifier (UID) abgespeichertWhitelistwerden. Die Bearbeitung der Whitelist erfolgt über den Webserver (siehe "Registerkarte
"Card Reader"" auf Seite 65). Wenn eine eingelesene Karte in der Liste erkannt wird, wird
der Ladevorgang freigegeben. Wenn innerhalb von 30 s kein Fahrzeug an die Ladestation
angeschlossen wird, dann verfällt diese Freigabe. Die Freigabe muss durch eine erneute
Identifizierung aktualisiert werden. Die Freigabe verfällt ebenfalls, wenn das Fahrzeug von
der Ladestation nach einem Ladevorgang getrennt wird.

Wenn die RFID-UID in der Whitelist nicht erkannt wird und der Ladevorgang nicht startet, dann wird dieses über ein Buzzer-Signal mitgeteilt.

Prüfung gegen ein über-
lagertes Management-
systemZur Prüfung der UID durch ein überlagertes Managementsystem unterdrücken Sie den
Buzzer über Modbus/TCP (Registeradresse 425, siehe "Registerzuordnung" auf Seite 71).
Die Unterdrückung des Buzzer-Signals ist für 60 s wirksam und muss fortlaufend erneuert
werden.

Die UID wird über Modbus/TCP ausgelesen und entsprechend vom überlagerten System verarbeitet. Die Freigabe erfolgt ebenfalls über Modbus/TCP. Wenn keine Ladefreigabe erteilt werden soll, dann kann der Buzzer über Modbus/TCP, Registeradresse 421, angesteuert werden. Die Freigabe bleibt solange bestehen, bis das überlagerte System die Freigabe per Modbus wieder zurücksetzt.

5 Mobilfunk-Schnittstelle

Die Ladesteuerungen haben je nach Ausführung eine Mobilfunk-Schnittstelle.

Ladesteuerung	Kommunikation	
	Ethernet	Mobilfunk
EV-CC-AC1-M3-CBC-RCM-ETH	x	-
EV-CC-AC1-M3-CBC-RCM-ETH-3G	x	x
EV-CC-AC1-M3-RCM-ETH-XP	x	-
EV-CC-AC1-M3-RCM-ETH-3G-XP	x	x

Antenne

Verwenden Sie für die Verbindung mit dem Mobilfunknetz ausschließlich die mitgelieferte Antenne. Schließen Sie diese an der SMA-Antennenbuchse an (siehe Bild 3-1 "Anschlüsse der Ladesteuerung").

SIM-Karte

Schieben Sie eine SIM-Karte im Micro-SIM-Format in den SIM-Kartenleser (Bild 3-1 "Anschlüsse der Ladesteuerung").

Bevor Sie die Ladesteuerung mit der SIM-Karte starten, geben Sie über den Webserver die PIN-Nummer der SIM-Karte ein (siehe Kapitel 8.4, "Registerkarte "Network" für Mobilfunk").

Die SIM-Karte ist nicht im Lieferumfang enthalten. Sie wird in der Regel vom Betreiber des Backend-Systems bereitgestellt, an dem die Ladestation angeschlossen wird.

Die Einstellung der Verbindungsdaten zum Backend erfolgt über den Webserver der Steuerung, siehe Kapitel 8.4, "Registerkarte "Network" für Mobilfunk".

6 Grundlagen Signalkontakte und Ladeabläufe

6.1 Control-Pilot-Signal

Bild 6-1 Control-Pilot-Signal

Über das Signal CP (Control Pilot) signalisiert die Ladesteuerung die Ladebereitschaft. Das Signal CP gibt die zulässige Ladestromhöhe als PWM-Signal kodiert an das Fahrzeug.

Das Fahrzeug signalisiert über die Spannungshöhe V_{a} den aktuellen Fahrzeugstatus.

Die Zuordnung der zulässigen Ladestromhöhe zur Pulsweite des PWM-Signals sowie die Zuordnung der Spannungshöhe zu den Zuständen des Fahrzeugs sind nach IEC 61851-1 geregelt (siehe Tabelle 6-2 auf Seite 38).
System status	Fahrzeug angeschlossen	S2 [*]	V _a †	Beschreibung
Α	Nein	Offen	12 V	$V_b^{\dagger} = 0 V$
				A1 (12 V DC): Kein Fahrzeug angeschlossen
				A2 (12 V PWM): Nur temporärer Übergangszustand, geht in A1 über
В	Ja	Offen	9 V	R2 detected
				B1 (9 V DC): EVSE **noch nicht bereit
				B2 (9 V PWM): EVSE bereit ^{††}
С	Ja	Geschlossen	6 V	R3 = 1.3 k Ω ±3 % Belüftung nicht erforderlich
				C1 (6 V DC): EVSE nicht bereit, Ladevorgang wird ab- gebrochen. Übergangszustand, nur bei vereinfachtem Control Pilot als dauerhafter Zustand möglich.
				C2 (6 V PWM): Ladevorgang aktiv
D ^{‡‡}	Ja	Geschlossen	3 V	R3 = 270 $\Omega \pm 3$ % Belüftung des Ladebereichs erforderlich
				D1 (6 V DC): EVSE nicht bereit, Ladevorgang wird ab- gebrochen. Übergangszustand, nur bei vereinfachtem Control Pilot als dauerhafter Zustand möglich.
				D2 (6 V PWM): Ladevorgang aktiv
E	-	-	0 V	b = 0: EVSE Netzproblem oder Netz nicht verfügbar, Kurz- schluss an Control Pilot
F	-	-	-12 V	EVSE nicht verfügbar

Tabelle 6-1 Fahrzeugstati nach IEC 61851-1

Schalter S2 (siehe Bild 6-1 auf Seite 36)

[†] V_a = gemessene Spannung an der Ladesteuerung

[‡] V_b = gemessene Spannung im Fahrzeug

** EVSE = Electric Vehicle Supply Equipment (Ladestation)

^{††} Die Bereitschaft der Ladestation kann z. B. durch ein Signal am Eingang Enable oder ein entsprechendes Modbus-Kommando erreicht werden.

^{‡‡} Status D in der Auslieferungskonfiguration nicht unterstützt

Systems tatus	Zustand	Beschreibung	Signal CP
A	Kein Fahrzeug an- geschlossen	-	12 V
В	Fahrzeug an- geschlossen	 Spannung am Signal CP sinkt auf 9 V. Widerstand R2 im Fahrzeug ist erkannt. Die Spannungshöhe an Signal CP ergibt sich aus der Reihenschaltung des Widerstands R1 in der Ladesteuerung, der Diode D im Fahrzeug und des Widerstands R2 im Fahrzeug an 12 V. 	
		Wenn die Ladestation bereit ist, Energie zu liefern, wird das PWM-Signal eingeschaltet. Die Ladebereitschaft kann automatisch, über Eingang EN, RFID, Ethernet oder Mobilfunk-Schnittstelle eingestellt werden. Die Puls- weite kodiert den zulässigen Ladestrom, den das Fahrzeug aus der Lade- infrastruktur entnehmen darf.	
		Die Kodierung ist in der Tabelle 6-3 auf Seite 39 dargestellt. B1 (9 V DC): EVSE noch nicht bereit B2 (9 V PWM): EVSE bereit	
C	Ladevorgang ge- startet	Wenn das Fahrzeug das PWM-Signal erkennt, dann schaltet das Fahrzeug über S2 einen weiteren Widerstand R3 zu R2 parallel. Daraus resultiert die Spannungshöhe 6 V	6 V
		Die Ladesteuerung schaltet die Netzspannung über Ladeschütz und Lade- kabel auf das Fahrzeug. Der Ladevorgang beginnt.	
В	Ladevorgang be- endet	Der Ladevorgang kann sowohl über die Ladestation als auch über das Fahr- zeug abgebrochen werden.	9 V
		Abschaltung über die Ladestation: Die Ladestation schaltet das PWM- Signal aus und signalisiert das Ende des Ladevorgangs. Das Fahrzeug öffnet S2. Die Ladesteuerung schaltet das Ladeschütz wieder ab und damit die Spannung vom Ladekabel. Wenn 5 s nach Abschaltung des PWM- Signals S2 nicht geöffnet wird, wird der Ladevorgang unabhängig vom Fahr- zeugstatus beendet.	
		Abschaltung über das Fahrzeug: Das Fahrzeug schaltet über S2 den Wider- stand R3 wieder ab. Das Fahrzeug beendet den Ladevorgang und öffnet S2. Die Ladesteuerung schaltet das Ladeschütz wieder ab und damit die Spannung vom Ladekabel.	
A	Fahrzeug von Ladestation ge- trennt	-	12 V

 Tabelle 6-2
 Typischer Ablauf eines Ladevorgangs

Zuordnung der Ladeströme zun	n Tastverhältnis des	Control-Pilot-Signals
------------------------------	----------------------	------------------------------

Maximaler Strom nach IEC 61851-1, der vom Fahrzeug aufgenommen werden darf
Ladevorgang ist nicht erlaubt.
Zeigt an, dass eine digitale Kommunikation zwischen Fahrzeug und Ladestation zur Festlegung der Ladeparameter verwendet wird. Der Ladevorgang ist nur mit einer digitalen Kommunikation erlaubt.
5 % Tastverhältnis ist geeignet, wenn der Control Pilot für die digitale Kommunikation benutzt wird. [*]
Ladevorgang ist nicht erlaubt.
6 A
Verfügbarer Strom = (% Tastverhältnis) x 0,6 A
Verfügbarer Strom = (% Tastverhältnis - 64) x 2,5 A
80 A
Verfügbarer Strom = (% Tastverhältnis - 64) x 2,5 A

Steuerung des maximal entnehmbaren Ladestroms nach IEC 61851-1 Tabelle 6-3

Funktion wird durch diese Steuerung nicht unterstützt

Aktivierungsmodus

Wenn bei einem angeschlossenen Fahrzeug vom Status B1 (9 V DC) auf Status B2 (9 V PWM) umgeschaltet wird und das Fahrzeug innerhalb von 30 Sekunden nicht in den Zustand C oder D übergeht, simuliert die Ladesteuerung eine Abtrennung des Fahrzeugs von der Ladestation.

Hierzu wird das Signal CP für 3 Sekunden auf -12 V DC gesetzt. Anschließend wird wieder auf das PWM-Signal umgestellt.

Dieser Vorgang wird nach dem Übergang von Status A1 oder B1 in Status B2 maximal einmal ausgeführt.

Der Aktivierungsmodus wird unter diesen Bedingungen wieder ausgeführt.

- Das Fahrzeug wird von der Ladesteuerung getrennt und neu angeschlossen.
- Der Ladevorgang wird durch die Ladestation unterbrochen (z. B. aus Gründen des Lastmanagements).

6.2 Proximity-Signal (Proximity Plug)

Mit dem Proximity Plug wird ein Ladestecker in der Ladestation erkannt und dessen Stromtragfähigkeit ermittelt.

Die Stromtragfähigkeit wird nach IEC 61851-1 durch den Widerstand Rc gekennzeichnet.

Das Gerät misst über das Signal PP (Proximity Plug) den Widerstandswert. Das Gerät ermittelt dadurch die Stromtragfähigkeit des angeschlossenen Ladekabels.

Die Kodierung des zulässigen Stroms zum Widerstandswert ist in IEC 61851-1 geregelt.

Tabelle 6-4Kodierung des zulässigen Stroms zum Widerstandswert nach
IEC 61851W1

Widerstandswert Rc nach Norm	Toleranzbereich	Resultierende Stromtrag- fähigkeit
-	< 75 Ω	Fehler
100 Ω	75 Ω 150 Ω	63 (70) A
220 Ω	150 Ω 330 Ω	32 A
680 Ω	330 Ω 1000 Ω	20 A
680 Ω	1000 Ω 2200 Ω	13 A
-	> 2200 Ω	0 A

7 OCPP-Backend-Anbindung

OCPP-Kommunikation

Sie können die Ladesteuerung je nach Ausführung über Ethernet oder Mobilfunk an ein zentrales Managementsystem anschließen. Die Ladesteuerung kommuniziert mit dem zentralen Managementsystem über das Open Charge Point Protocol OCPP1.6J (JSON) und das Websockets-Protokoll.

Ladesteuerung	OCPP 1.6J-Kommunikation	
	Ethernet	Mobilfunk
EV-CC-AC1-M3-CBC-RCM-ETH	-	-
EV-CC-AC1-M3-CBC-RCM-ETH-3G	-	х
EV-CC-AC1-M3-RCM-ETH-XP	x	-
EV-CC-AC1-M3-RCM-ETH-3G-XP	x	х

Einen Überblick über die unterstützte Operation aus dem OCPP-Protokoll gibt die folgende Tabelle:

Tabelle 7-2 Übersicht unterstützter OCPP-Operationen

OCPP Operationen	Anmerkungen
Authorize	Ohne "Local Authorization List" und "Authorization Cache"
Boot Notification	Vollständige Implementierung
Heartbeat	Vollständige Implementierung
Meter Values	Nicht konfigurierbar, alle Messwerte werden übertragen
Start Transaction	Vollständige Implementierung
Status Notification	Vollständige Implementierung
Stop Transaction	Vollständige Implementierung
Cancel Reservation	Vollständige Implementierung
Change Availability	Vollständige Implementierung
Clear Charging Profile	Vollständige Implementierung
Remote Start Transaction	Start von Ladevorgängen nur mit Autorisierung durch das Backend
Remote Stop Transaction	Vollständige Implementierung
Reserve Now	Vollständige Implementierung, Reservierungen nur auf die spezifische Connector-ID, nicht allgemein auf die ID 0
Reset	Nur HardReset (Bei einem angeforderten SoftReset wird ebenfalls ein HardReset durchgeführt)

OCPP Operationen	Anmerkungen
Set Charging Profile	Keine Recurring-Profiles, keine ge- stapelten Profile
	Maximale Anzahl der verketteten Elemente in einem Profil:
	 Ladesteuerung EV-CC3G Master: TxDefaultProfile, TxProfile: 10 Elemente MaxProfile: 5 Slave: TxDefaultProfile, TxProfile: 10 Elemente MaxProfile: keine
	Ladesteuerung EV-CCXP
	 Master: TxDefaultProfile, TxProfile: 40 Elemente MaxProfile: 5 Slave: TxDefaultProfile, TxProfile: 10 Elemente MaxProfile: keine Beachten Sie auch den Abschnitt "OCPP-Ladeprofile und Lastmanagement" auf Seite 69.
Trigger Message	Nur für die implementierten Nachrichten
Unlock Connector	Eingeschränkt
Change Configuration	Parameter - ConnectorTimeOut - HeartbeatInterval - MeterValueSampleInterval - StopTransactionOnInvalidId - PricePerkWh - WebSocketPingInterval
Get Diagnostics	Upload auf einen FTP-Server
Firmware-Update	Download des FW-Updates von einem FTP-Server

Tabelle 7-2 Übersicht unterstützter OCPP-Operationen [...]

Konfiguration

Eine Konfiguration der Ladesteuerung ist eingeschränkt möglich. Die Tabelle gibt eine Übersicht über die implementierte Konfiguration der Ladesteuerung. ConfigurationKeys mit dem ReadOnly-Wert "false" können durch das Backend überschrieben werden.

 Tabelle 7-3
 ConfigurationKeys der Ladesteuerung

ConfigurationKey	ReadOnly	Value
AuthorizeRemoteTxRequests	true	true
ChargeProfileMaxStackLevel	true	1
ChargingScheduleAllowedChargingRateUnit	true	Current
ChargingScheduleMaxPeriods	true	1
ClockAlignedDataInterval	true	0
ConnectionTimeOut	false	60
ConnectorPhaseRotation	true	unknown
GetConfigurationMaxKeys	true	0
HeartbeatInterval	false	1800
LocalAuthorizeOffline	true	false
LocalPreAuthorize	true	false
MaxChargingProfilesInstalled	true	1
MeterValuesAlignedData	true	0
MeterValueSampleInterval	false	300
MeterValuesSampledData	true	0
NumberOfConnectors	true	Entsprechend der an- geschlossenen Ladesteuerungen
PricePerkWh	false	0
ResetRetries	false	0
StopTransactionOnEVSideDisconnect	true	true
StopTransactionOnInvalidId	true	true
StopTxnAlignedData	true	true
StopTxnSampledData	true	true
SupportedFeatureProfiles	true	Core, Reservation, SmartCharging, RemoteTrigger
TransactionMessageAttempts	false	3
TransactionMessageRetryInterval	false	10
UnlockConnectorOnEVSideDisconnect	true	true
WebsocketPingInterval	false	600

8 Statusanzeige und Konfiguration über Webserver

8.1 Verbindung zwischen PC und Ladesteuerung herstellen

Verbinden Sie die Ladesteuerung über den Ethernet-Anschluss mit einem Rechner, auf dem ein Browser installiert ist.

Im Auslieferungszustand hat das System die statische IP-Adresse 192.168.0.8.

Unter der voreingestellten IP-Adresse können Sie das System erreichen, wenn Sie an Ihrem Rechner die folgenden Einstellungen vornehmen (Beispielprozedur für Windows 10):

- Wählen Sie in Ihrem System unter "Start, Windows-System, Systemsteuerung, Netzwerk und Internet" das "Netzwerk- und Freigabecenter" aus.
- Wählen Sie unter den angebotenen Verbindungen diejenige aus, die mit der Ladesteuerung verbunden ist, z. B. Ethernet.
- Klicken Sie auf die Schaltfläche "Eigenschaften".
- Wählen Sie "Internetprotokoll Version 4 (TCP/IPv4)" aus. Klicken Sie auf die Schaltfläche "Eigenschaften".
- Hier können Sie Ihrem Rechner eine passende IP-Adresse und Subnetzmaske zuweisen, damit Sie mit diesem eine direkte Verbindung zur Ladesteuerung aufbauen können, z. B. IP-Adresse 192.168.0.1 und der Subnetzmaske 255.255.255.0
- Sie können nun über Ihren Browser auf das System zugreifen. Es konfigurieren. Geben Sie dazu http://192.168.0.8 in die Adressleiste Ihres Browsers ein.
- Je nach Einstellung und Netzwerk können Sie auch den Gerätenamen oder eine andere von Ihnen über den Browser eingestellte IP-Adresse in die Adressleiste Ihres Browsers eingeben.

Mit dem Aufruf des Webservers werden Sie aufgefordert, ein Kennwort einzugeben. In den Werkseinstellungen ist dieses auf "**phoenix**" gesetzt. Wir empfehlen, dieses über die Registerseite "Config" zu ändern.

Konfigurationen auf einer der Seiten werden mit der Schaltfläche "**Submit**" auf das Gerät übertragen. Einzelne Konfigurationsparameter werden erst mit einem Neustart des Geräts wirksam. Daher ist nach Einstellung aller Parameter ein einmaliger Reset über die entsprechende Schaltfläche notwendig.

8.2 Registerkarte "Status"

State (A-F)		A
Energy Charge Sequence (Wh)		0
Actual Charge Current Setting (A)		0
Remote Charge Current Limitation (A		63
Capability of Cable Assembly (A)		20
Active Charging Duration (hh:mm)		00:00
Inputs		
LD - Connector Locking Detection	¥	
EN - Enable Charging (permanent)	•	
ML - Manual Lock (pulsed)	¥	
XR - External Release, EVSE available	•	
IN - Contactor Monitor (NC)	•	v
Outputs		_
ER - Authorization Status	۲	
LR - Locking request	۲	• 🗉
VR - State C or D	٠	• •
CR - PWM on	۲	

Tabelle 8-1 Registerkarte "Status"

Anzeigewert	Beschreibung
State (A-F)	Status des Ladevorgangs (A-F) nach IEC 61851-1, Annex A
Energy Charge Sequence (Wh)	Energiemenge, die im aktuellen Ladevorgang bereits geladen wurde. Rücksetzung über den Zustand A.
Actual Charge Current Setting (A)	Entspricht dem maximal zulässigen Ladestrom, der dem Fahrzeug über das PWM-Tast- verhältnis übermittelt wird. Der angezeigte Wert wird als kleinster Wert ermittelt aus diesen Faktoren:
	– der Konfiguration über den Drehkodierschalter
	 der Stromtragfähigkeit des Ladekabels
	 dem über "Remote Charge Current Limitation" eingegebenen Wert
Remote Charge Current Limitation (A)	Eingabefeld über das der maximale Ladestrom für das Elektrofahrzeug angepasst werden kann.
Capability of Cable Assembly (A)	Entspricht der Stromtragfähigkeit des angeschlossenen Ladekabels, ermittelt durch Auswertung des Proximity-Kontakts.
Active Charging Duration (hh:mm)	Zeit in hh:mm, in der das Fahrzeug geladen wird. Rücksetzung über den Zustand A.

 Tabelle 8-1
 Registerkarte "Status" [...]

Anzeigewert	Beschreibung
Inputs	•
LD	Zeigt den Status des digitalen Eingangs LD über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Eingang.
	Die Zuordnung der Funktionen zu den Eingangssignalen kann durch das Pulldown-Menü konfiguriert werden. Der Default-Wert ist "Connector Locking Detection", siehe Tabelle 8-2.
EN	Zeigt den Status des digitalen Eingangs EN über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Eingang.
	Die Zuordnung der Funktionen zu den Eingangssignalen kann durch das Pulldown-Menü konfiguriert werden. Der Default-Wert ist "Enable Charging (permanent)", siehe Tabelle 8-2.
ML	Zeigt den Status des digitalen Eingangs ML über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Eingang.
	Die Zuordnung der Funktionen zu den Eingangssignalen kann durch das Pulldown-Menü konfiguriert werden. Der Default-Wert ist "Manual Lock (pulsed)", siehe Tabelle 8-2.
XR	Zeigt den Status des digitalen Eingangs XR über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Eingang.
	Die Zuordnung der Funktionen zu den Eingangssignalen kann durch das Pulldown-Menü konfiguriert werden. Der Default-Wert ist "External Release, EVSE available", siehe Tabelle 8-2.
IN	Zeigt den Status des digitalen Eingangs IN über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Eingang.
	Die Zuordnung der Funktionen zu den Eingangssignalen kann durch das Pulldown-Menü konfiguriert werden. Der Default-Wert ist "Maximal Current 16 A", siehe Tabelle 8-2.
Outputs	·
ER	Zeigt den Status des digitalen Ausgangs ER über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Ausgang.
	Die Ausgänge können über das Pulldown-Menü auf verschiedene Stati / Ereignisse konfiguriert werden. Der Default-Wert ist "Status E oder Status F (Error)", siehe Tabelle 8-3.
LR	Zeigt den Status des digitalen Ausgangs LR über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Ausgang.
	Die Ausgänge können über das Pulldown-Menü auf verschiedene Stati / Ereignisse konfiguriert werden. Der Default-Wert ist "Locking Request", siehe Tabelle 8-3.
VR	Zeigt den Status des digitalen Ausgangs VR über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Ausgang.
	Die Ausgänge können über das Pulldown-Menü auf verschiedene Stati / Ereignisse konfiguriert werden. Der Default-Wert ist "State C or D", siehe Tabelle 8-3.
CR	Zeigt den Status des digitalen Ausgangs CR über die Checkbox an. Eine gesetzte Checkbox steht für eine logische 1 oder 12 V am Ausgang.
	Die Ausgänge können über das Pulldown-Menü auf verschiedene Stati / Ereignisse konfiguriert werden. Der Default-Wert ist "PWM on", siehe Tabelle 8-3.

Tabelle 8-1 Registerkarte "Status" [...]

Anzeigewert	Beschreibung
Schaltflächen	
Submit	Überträgt ausgewählte Konfigurationen auf die Ladesteuerung
Reset	Führt einen Neustart der Ladesteuerung aus. Ein Neustart ist notwendig, damit geänderte Konfigurationen wirksam werden.

Tabelle 8-2 Konfigurationsoptionen der digitalen Eingänge

Option	Bedeutung
(Leer)	Eingang keiner Funktion zugeordnet
Enable Charging (permanent)	Freigabe des Ladevorgangs durch permanentes High-Signal am Eingang. (Default für Eingang EN). Voraussetzung: DIP #7 = 1
Enable Charging (pulsed)	Freigabe des Ladevorgangs durch gepulstes High-Signal am Eingang. Rücknahme der Freigabe mit dem nächsten Puls. Voraussetzung: DIP #7 = 1
External Release, EVSE available	Verfügbarkeit der Ladestation durch permanentes High-Signal am Eingang. Status F bei Low-Signal (Default für Eingang XR). Voraussetzung: DIP #8 = 1
Connector Locking Detection	Auswertung der Verriegelungsrückmeldung, High-Signal entspricht einem verriegeltem Ladestecker in der Infrastruktur-Ladedose (Default für Eingang LD). Voraussetzung: DIP #6 = 1
Manuel Lock (permanent)	Verriegelung des Ladesteckers bei einem High-Signal am Eingang, entriegeln mit Low-Signal. Voraussetzung: DIP #9 = 1
Manuel Lock (pulsed)	Verriegelung des Ladesteckers bei Detektion eines Pulses am Eingang, Entriegelung mit dem nächsten Puls, (Default für Eingang ML). Voraussetzung: DIP #9 = 1
Contactor Monitor (NO)	Rückmeldung der Schützüberwachung über einen "NO – Normally Open"-Hilfskontakt am Lastschütz. Aktivierung der Funktion "Contactor-Monitoring" auf der Registerseite CONFIG notwendig.
Contactor Monitor (NC)	Rückmeldung der Schützüberwachung über einen "NC – Normally Closed"-Hilfskontakt am Lastschütz. Aktivierung der Funktion "Contactor-Monitoring" auf der Registerseite CONFIG notwendig.
Maximal Current "digital communication"	PWM-Tastverhältnis des Control Pilot Signals wird eingestellt auf: 5 % - Digitale Kommunikation zum Fahrzeug. Die High-Level Kommunikation zum Fahrzeug ist kein Bestandteil der Ladesteuerung.

Option	Bedeutung				
Maximal Current 6 A	Der maximale Ladestrom wird bei einem High-Signal auf den jeweiligen Stromwert be-				
Maximal Current 10 A	grenzt. (Default für Eingeng NI: 16 A)				
Maximal Current 13 A					
Maximal Current 16 A					
Maximal Current 20 A					
Maximal Current 32 A]				
Maximal Current 63 A					
Maximal Current 70 A					
Maximal Current	Der Ladestrom wird auf den maximal zulässigen Wert erhöht. Begrenzungen über Modbus TCP werden ignoriert.				
Suspended EVSE	Der Ladevorgang wird unterbrochen. Bei Betrieb an einem OCPP-Backend wird eine Nachricht "Suspended_EVSE" generiert. Die laufende Transaktion wird nicht beendet.				
Error Input	Die Ladesteuerung kann über einen digitalen Eingang gezielt in einen Fehlerzustand gesetzt werden. Im Register 155 wird Bit 2 gesetzt (siehe Tabelle 9-2).				

 Tabelle 8-2
 Konfigurationsoptionen der digitalen Eingänge [...]

Tabelle 8-3 Konfigurationsoptionen der digitalen Ausgänge

Option	Bedeutung
(Leer)	Der Ausgang ist keinem Status oder Ereignis zugeordnet.
State A	Gerät ist im Status A, kein Fahrzeug angeschlossen.
State B	Gerät ist im Status B, Fahrzeug angeschlossen, kein Ladevorgang.
State B and PWM on	Gerät ist im Status B2, Fahrzeug angeschlossen, PWM eingeschaltet (Ladestation bereit zum Laden).
State B and PWM off	Gerät ist im Status B1, Fahrzeug angeschlossen, PWM ausgeschaltet (Ladestation nicht zum Laden bereit).
State C	Gerät ist im Status C, Ladevorgang kann stattfinden.
State D	Gerät ist im Status D, Ladevorgang kann stattfinden.
State E	Gerät ist im Status E, Fehler oder Ladestation nicht bereit.
State F	Gerät ist im Status F, Ladestation nicht verfügbar für Ladevorgänge.
State A or State B	Gerät ist im Status A oder B, kein Ladevorgang aktiv.
State A or State B and PWM on	Gerät ist im Status A oder B – mit eingeschaltetem PWM-Signal.
State A or State B and PWM off	Gerät ist im Status A oder B – mit ausgeschaltetem PWM-Signal.
State A or State B or State C	Gerät ist im Status A, B oder C.
State A or State B or State D	Gerät ist im Status A, B oder D.
State A or State B or State C or State D	Gerät ist im Status A, B, C oder D, kein Fehler, Ladestation verfügbar.
State E or State F (Error)	Status E oder Status F, Fehler oder Ladestation nicht verfügbar. Default für Aus- gang ER.
State C or D	Status C oder D, Ladevorgang kann stattfinden. Default für Ausgang VR.
PWM on	PWM-Signal eingeschaltet, Ladevorgang seitens der Ladesteuerung frei- gegeben. Default für Ausgang CR.

Option	Bedeutung
Valid ProximityPlug	Ladestecker mit gültigem Proximity erkannt.
Invalid ProximityPlug	Ladestecker mit ungültigem Proximity erkannt.
13A at ProximityPlug	13-A-Ladekabel detektiert.
20A at ProximityPlug	20-A-Ladekabel detektiert.
32A at ProximityPlug	32-A-Ladekabel detektiert.
63A at ProximityPlug	63-A-Ladekabel detektiert.
13A or 20A at ProximityPlug	13- oder 20-A-Ladekabel detektiert.
13A or 20A or 32A at ProximityPlug	13- oder 20- oder 32-A-Ladekabel detektiert.
Rejected plug with low current carrying capacity	Gerät lehnt das Laden des Fahrzeugs aufgrund unzureichender Stromtragfähig- keit des Ladekabels ab.
Contactor on	Ladeschütz zugeschaltet.
Ventilation on	Ventilation (Status D) zugeschaltet.
Locking request	Verriegelung ist aktiv. Default für Ausgang LR.
Register Output1	Das Register "Output1" wurde über Modbus gesetzt (Logisch 1).
Register Output2	Das Register "Output2" wurde über Modbus gesetzt (Logisch 1).
Register Output3	Das Register "Output3" wurde über Modbus gesetzt (Logisch 1).
Register Output4	Das Register "Output4" wurde über Modbus gesetzt (Logisch 1).
Overcurrent Detected	Ein Fahrzeug hat mit einem höheren Strom geladen, als durch das PWM-Signal vorgegeben.
Contactor Failure	Die Schützüberwachung hat einen Zustand erkannt. Dieser Zustand kann dazu führen, dass an der Ladestation im ausgeschalteten Zustand eine Spannung an- liegt.
State D Vehicle Rejected	Ein Fahrzeug, das im Status D lädt, wurde erkannt und abgewiesen.
State B or State C or State D	Ein Fahrzeug ist mit der Ladestation verbunden.
Authorization Status	Am Ausgang wird ein blinkendes Signal bereitgestellt, wenn die Anfrage zur Autorisierung über OCPP an ein zentrales Managementsystem gesendet wird.
	Der Ausgang wird permanent angeschaltet, wenn die Freigabe erteilt ist und Status B2 oder C2/D2 vorliegt.
	Der Ausgang wird zurückgesetzt, wenn einer dieser Zustände eintritt:
	 Ladevorgang beendet.
	 Ladefreigabe nicht erteilt.
	 Ladefreigabe zur ückgenommen.

 Tabelle 8-3
 Konfigurationsoptionen der digitalen Ausgänge [...]

8.3 Registerkarte "Network" für Ethernet

Tabelle 8-4 Schnittstellen

Ladesteuerung	Komm	unikation	OCPP 1.6J-Kommunikation		
	Ethernet	Mobilfunk	Ethernet	Mobilfunk	
EV-CC-AC1-M3-CBC-RCM-ETH	X	-	-	-	
EV-CC-AC1-M3-CBC-RCM-ETH-3G	X	x	-	x	
EV-CC-AC1-M3-RCM-ETH-XP	X	-	x	-	
EV-CC-AC1-M3-RCM-ETH-3G-XP	X	x	x	x	

Tabelle 8-5 Registerkarte "Network" für Ethernet

Option	Bedeutung			
MAC	MAC-Adresse des Geräts. Die MAC-Adresse ist fest eingestellt, eindeutig und kann nicht geändert werden.			
DHCP	Dieses Feld ermöglicht die Auswahl zwischen einer festen IP-Adresse und einer DHCP- Anfrage.			
	 "disabled": Es ist eine feste IP-Adresse inklusive Subnetzmaske und Standard-Gate- way eingestellt (Default) 			
	 "enabled": Es wird eine DHCP-Anfrage ausgeführt. Wenn ein DHCP-Server im Netz- werk vorhanden ist, wird dem Gerät eine IP-Adresse zugewiesen. Wenn zusätzlich ein DNS-Server im Netzwerk vorhanden ist, kann auf das Gerät über den Geräte- namen zugegriffen werden. 			
IP Address	Hier können Sie die IP-Adresse des Geräts einstellen. Diese IP-Adresse wird benutzt, wenn kein DHCP-Service aktiv ist. (Default: 192.168.0.8)			
Subnetmask	Hier können Sie die Subnetzmaske des Geräts einstellen. Diese Subnetzmaske wird be- nutzt, wenn kein DHCP-Service aktiv ist. (Default: 255.255.255.0)			
Gateway	Hier können Sie die IP-Adresse des Standard-Gateways einstellen. Diese IP-Adresse wird benutzt, wenn kein DHCP-Service aktiv ist. (Default: 192.168.0.1)			
Device Name	Über den Gerätenamen können Sie auf das System zugreifen, wenn ein DNS-Server im Netzwerk den Namen auflösen kann. Der Default-Wert ist "Smart".			

Option	Bedeutung
Serial Number	Die Seriennummer des Geräts ist fest eingestellt und eindeutig.
Schaltflächen	
Submit	Überträgt ausgewählte Konfigurationen auf die Ladesteuerung.
Reset	Startet die Ladesteuerung nach der Übertragung der ausgewählten Konfiguration neu.

Tabelle 8-5 Registerkarte "Network" für Ethernet [...]

8.4 Registerkarte "Network" für Mobilfunk

Tabelle 8-6 Schnittstellen

Ladesteuerung	Kommunikation		OCPP 1.6J-Kommunikation	
	Ethernet	Mobilfunk	Ethernet	Mobilfunk
EV-CC-AC1-M3-CBC-RCM-ETH	х	-	-	-
EV-CC-AC1-M3-CBC-RCM-ETH-3G	х	x	-	x
EV-CC-AC1-M3-RCM-ETH-XP	х	-	x	-
EV-CC-AC1-M3-RCM-ETH-3G-XP	x	x	х	x

Bild 8-3 Re	egisterkarte "Net	work	" für l	Mobi	ilfunk	
MA	NC.	a8.74	1d-f0-92-	hc		
DH	ICP	0				
IP	Address	192	168	0	8	
Sut	bnetmask	255	255	255	0	
Ga	teway	192	168	0	1	
DN	IS-Server	0	0	0	0	
De	vice Name	Smart	<u> </u>			
Ser	rial Number	00000	001132			
M	obile Network					
ICC	CID	89492	0131350	4115162	24	
RS	SI (dBm)	-93				
IME	EI	86603	4032808	2160		
Col	nnection Mode	UMTS				
Car	rrier	Teleko	m.de			
Cor	nnection Status (SIM): R	egiste	red, ho	me net	etwork	
E>	xternal SIM					
Pin	1	7358				
AP	'N	cda.vo	dafone.d	e		
AP	N-User	resy4(2 phoenix	contact	t.coi	
AP	N-Password	ax123				
0	CPP-J Configur	atio	n			
En	able OCPP 116					
	PP Vendor	PHOE	NIXCON	TACT		
00	CPP Model	EVCC	1018702			
Fre	eemode when offline					
Fre	eemode after power loss					
Fre	eemode RFID card	CC261	IF51			
ws • :// 172.16.1	12.9	: 8080	/ocp	p/		
Last message sent:	[2,"6","Heartbeat",{}]					
Last message received:	[3,"6",{"currentTime":'	2019-0	99 - <mark>24</mark> 709	9:47:10	<i>8</i>]	
	Please reset the device	after o	configur	ation	submit	

Mobile Network (nur EV-CC-	AC1-M3-CBC-RCM-ETH-3G)
ICCID	Integrated Circuit Card Identifier: Eindeutige Seriennummer der SIM-Karte.
RSSI (dBm)	Received Signal Strength Indication: Signalstärke des eingehenden Funksignals. Idealer- weise im Bereich -70 bis -80 dBm für eine stabile Funkverbindung. -120 dBm bedeutet, dass keine Verbindung aufgebaut werden konnte.
IMEI	International Mobile Equipment Identity: Seriennummer des integrierten Mobilfunkmodems.
Connection Mode	Verfügbarer Mobilfunkstandard (UMTS/GSM)
Carrier	Netzbetreiber, in dem die Ladesteuerung eingebucht ist.
Connection Status (SIM)	
"Not registered, MS is currently searching for a new operator to register with"	Ladesteuerung noch nicht im Mobilfunknetz eingebucht.
"Registered, home network"	Das Gerät ist im Mobilfunknetzwerk eingebucht.
"Registration denied"	SIM-Karte vom Provider gesperrt.
"Registered, roaming"	Mobile Station ist nicht im Heimnetzwerk eingebucht. Roaming ist aktiv.
"Wrong PIN"	PIN ist nicht korrekt. Neueingabe und Geräteneustart ist notwendig.
"PUK required"	SIM-Karte nach mehrmaliger PIN-Eingabe gesperrt. PUK-Eingabe über externes Gerät (z. B. Mobiltelefon) notwendig.
"Unknown Error"	Sonstiger Modemfehler.
External SIM	
PIN	Personal Identification Number der SIM-Karte. Geben Sie diese ein, bevor Sie die SIM- Karte in die Ladesteuerung einsetzen und das Gerät starten. Damit vermeiden Sie, dass die SIM-Karte gesperrt wird.
APN	Access Point Name: Name des Gateways zwischen dem mobilem und dem öffentlichen Netzwerk.
APN-User	Benutzername für den Zugriff auf das APN.
APN-Password	Passwort für den Zugriff auf das APN.
OCPP-J Configuration	
Enable OCPP-J 1.6	Feld zur Aktivierung der Kommunikation mit einem zentralen Managementsystem über den Standard OCPP 1.6J.
OCPP Interface (Nur Lade- steuerung EV-CCXP)	Auswahl, ob die OCPP-Kommunikation über Modem oder Ethernet erfolgen soll.
OCPP Vendor	Feld zur Eingabe des Ladestationsherstellers.
OCPP Model	Feld zur Eingabe der Modellbezeichnung der Ladestation.
Freemode when offline	Wenn die Verbindung zum zentralen Managementsystem unterbrochen ist, werden Lade- vorgänge ohne Autorisierungsanfrage gestartet.
Freemode after power loss	Wenn beim Hochlaufen die Ladesteuerung im Status B ist (z. B. nach einem Stromaus- fall), dann wird eine Autorisierungsanfrage mit der "Freemode RFID card" gestartet.
Freemode RFID card	Benutzerkennung der RFID-Karte (RFID-UID), mit der nach einem Stromausfall die Autorisierung gestartet wird. Hinterlegen Sie die RFID-UID im Managementsystem als gültigen Benutzer.

Tabelle 8-7 Registerkarte "Network (3G-Version)"

Mobile Network (nur EV-CC-AC1-M3-CBC-RCM-ETH-3G)				
OCPP End Point Address	Verbindungsdaten zum Backend. Die Verbindungsdaten werden typischerweise vom Backend-Betreiber bereitgestellt.			
	Protokoll: WebSocket (WS) oder WebSocketSecure (WSS):			
	 End point Adresse 			
	– Port-Nummer			
	– OCPP-ID			
Last Message Sent	Darstellung der letzten Nachricht, die zum Backend gesendet wurde.*			
Last Message Received	Darstellung der letzten Nachricht, die vom Backend empfangen wurde.*			
Schaltflächen				
Submit	Überträgt ausgewählte Konfigurationen auf die Ladesteuerung.			
Reset	Startet die Ladesteuerung nach der Übertragung der ausgewählten Konfiguration neu.			
*				

Tabelle 8-7 Registerkarte "Network (3G-Version)" [...]

Weitere Log-Daten können über "IP-Adresse/loggedmessages", z. B. "192.168.0.8/loggedmessages" eingesehen werden.

8.5 Registerkarte "Configuration"

3ild 8-4	Registerkarte "Configuration"	
	Preset Charge Current	63
	DIP-Switch	
	D1 Proximity Detection	Ø
	D2 Reject Cable Assembly rated 20A / 13A	
	D3 Reject Cable Assembly rated 13A	
	D4 Connector locking	2
	D5 Reserved	
	D6 High Signal at LD for Charging Release	2
	D7 High Signal at EN for Charging Release	
	D8 High Signal at XR for Charging Release	
	D9 Manual Lock/Unlock Function at ML	
	D10 Register Enable Charging & External Release	2
	Locking Actor Timing (For Pulse	d Locking only)
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s)	d Locking only)
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s)	d Locking only) 0.5
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s)	0.5 0.5 2
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring	d Locking only) 0.5 0.5 2
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring	d Locking only) 0.5 0.5 2
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring Via Contactor Monitor (NC) •	d Locking only) 0.5 0.5 2
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring Via Contactor Monitor (NC) •	d Locking only) 0.5 0.5 2
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring Via Contactor Monitor (NC) • Others New Password Register Enable Charging	d Locking only)
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring Via Contactor Monitor (NC) • Others New Password Register Enable Charging CP Duty Cycle 5%	d Locking only)
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring Via Contactor Monitor (NC) • Others New Password Register Enable Charging CP Duty Cycle 5% Register External Release, EVSE available	d Locking only)
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring Via Contactor Monitor (NC) • Others New Password Register Enable Charging CP Duty Cycle 5% Register External Release, EVSE available Reject State D vehicles	d Locking only) 0.5 0.5 2
	Locking Actor Timing (For Pulse Pulse Duration for Locking(0.5s Default, max. 3s) Pulse Duration for Unlocking(0.5s Default, max. 3s) Time between Locking Cycles (2s Default, max. 10s) Contactor Monitoring Via Contactor Monitor (NC) • Others New Password Register Enable Charging CP Duty Cycle 5% Register External Release, EVSE available Reject State D vehicles Remote Locking	d Locking only)

Anzeigewert		Beschreibung					
Confi	guration						
Prese	et Charge Current	Hier wird der maximal zulässige Ladestrom angezeigt, der über den Drehkodierschalter am Gerät einstellt ist.					
DIP-S	Switch	Hier werden die Einstellungen des Geräts dargestellt, wie sie an der Front des Geräts mit den DIP-Schaltern eingestellt sind, siehe Tabelle 3-2 auf Seite 15					
D1	Proximity Detection	Der Proximity-Widerstand wird ausgewertet. Die Stromtragfähigkeit des Ladesteckers wird ermittelt.					
D2	Reject Cable Assembly rated 20 A / 13 A	Abweisen von Ladesteckern mit einer Stromtragfähigkeit ≤ 20 A oder ≤ 13 A (nur, wenn DIP 1 auf ON steht)					
D3	Reject Cable Assembly rated 13 A	Abweisen von Ladesteckern mit einer Stromtragfähigkeit \leq 13 A (nur, wenn DIP 1 und 2 auf ON stehen)					
D4	Connector Locking	Verriegelungsfunktion aktiviert					
D5	Reserved	Reserviert für zukünftige Anwendungen					
D6	High Signal at LD for Charging Release	Verriegelung Rückmeldung (nur, wenn DIP 4 auf ON steht)					
D7	High Signal at EN for Charging Release	Freigabefunktion Ladevorgang aktivieren					
D8	High Signal at XR for Charging Release	Verfügbarkeit Ladestation wählen					
D9	Manual Lock/Unlock Function at ML	Option manuelle Verriegelung wählen (nur, wenn DIP 4 auf ON steht)					
D10	Register Enable Charging & External Release	Die Freigabe erfolgt über Modbus, Webserver, lokale RFID-Whitelist oder aus dem OCPP-Backend.					
Lock	ing Actor Timing						
Pulse (0.5 s	Duration for Locking Default, max. 3 s)	Zeitdauer des Verriegelungsimpulses					
Pulse (0.5 s	Duration for Unlocking Default, max. 3 s)	Zeitdauer des Entriegelungsimpulses					
Time (2 s D	between Locking Cycles refault, max. 10 s)	Zeitdauer, die zwischen den Ver- und Entriegelungsimpulsen gewartet wird, wenn im Ab- lauf der automatischen Verriegelungsoption Fehler auftreten					

Tabelle 8-8 Anzeigewerte Registerkarte "Configuration"

Anzeigewert	Beschreibung				
Contactor Monitoring					
Contactor Monitoring	Auswahlmöglichkeiten zur Lastschützüberwachung				
	Disabled: Lastschütz wird nicht überwacht				
	Via Sense: Lastschütz wird durch Auswertung der Ausgangsspannung des Lastrelais über Eingang CT überwacht				
	Via Contactor Monitor NO: Überwachung über einen NO (normally open) Hilfskontakt des Lastschützes. Ein digitaler Eingang muss dieser Funktion zugeordnet sein				
	Via Contactor Monitor NC: Überwachung über einen NC (normally closed) Hilfskontakt des Lastschützes. Ein digitaler Eingang muss dieser Funktion zugeordnet sein				
	Via Energy Meter: Auswertung durch Spannungsmessung mit einem angeschlossenen Energiemessgerät				
Others	·				
New Password	Eingabemöglichkeit zum Verändern des Passworts				
Register Enable Charging	Dieses Feld entspricht dem digitalen Eingang EN. Mit der Aktivierung wird der Ladevorgang freigegeben, wenn diese Option über den DIP 10 gewählt wurde. Wenn über DIP 7 der digitale Eingang EN für den Ladevorgang ebenfalls aktiviert ist, dann werden diese beiden Eingangsgrößen ODER-verknüpft.				
CP Duty Cycle 5 %	In diesem Feld wird die Funktion "Digitale Kommunikation" gewählt. Diese Auswahl ent- spricht der Einstellung "Dig" am Drehkodierschalter. Die in diesem Fall angewandte Powerlinekommunikation wird nicht direkt von dieser Ladesteuerung unterstützt.				
Register External Release, EVSE available	Dieses Feld entspricht dem digitalen Eingang XR. Mit der Aktivierung (Default beim Start des Controllers) wird die Ladestation aktiviert, andernfalls wird Status F eingenommen. Für die Nutzung dieser Funktion muss DIP 10 = 1 gesetzt werden.				
Reject State D vehicles	Wenn diese Funktion auf "enabled" gesetzt wird, werden Fahrzeuge abgewiesen, die im Status D laden. (Status D = positiver Wert des PWM-Signals auf dem Control Pilot = 3 V.) Das Gerät geht in diesem Fall in einen Fehlerstatus über und kann nur über den Status A zurückgesetzt werden.				
Remote Locking	Checkbox zum Ver- und Entriegeln des Ladesteckers in der Infrastruktur-Ladedose. Setzen Sie dazu DIP 4 und DIP 9 auf 1.				
Schaltflächen					
Firmware-Update	Öffnet ein Dialogfenster für das Update der Firmware				
Submit	Überträgt die ausgewählte Konfiguration auf die Ladesteuerung				

Tabelle 8-8 Anzeigewerte Registerkarte "Configuration" [...]

8.6 Registerkarte "Energy Meter"

Über die RS-485-Schnittstelle können unterschiedliche Energiemessgeräte mit der Ladesteuerung verbunden werden, die das Modbus/RTU-Protokoll unterstützen. Die Energiemessgeräte müssen Integer-Daten mit maximal zwei Datenworten im Format Little Endian oder Big Endian in Holding- oder Input-Registern bereitstellen.

Die für den Ladeprozess relevanten Messwerte werden von der Ladesteuerung zyklisch ausgelesen und auf dem Webserver dargestellt. Außerdem werden die Messwerte in den Modbus TCP-Registern zum Auslesen über die Ethernet-Schnittstelle bereitgestellt.

Bei der 3G- und 3G-XP-Variante können Sie die relevanten Messwerte von der Ladesteuerung über OCPP an das jeweilige Backend übertragen. Beachten Sie dabei folgende Unterschiede.

Bei der Anbindung an ein zentrales Managementsystem werden die Messwerte in Form von OCPP MeterValues bereitgestellt.

Werksseitig konfigurierte Energiemessgeräte

Ladesteuerung **bis Firmware 1.11** sind werksseitig auf dieses Energiemessgerät eingestellt: EEM-350-D-MCB, 2905849.

Ladesteuerung ab **Firmware 1.12** sind werksseitig auf dieses Energiemessgerät eingestellt: EEM-EM357, 2908588.

Siehe auch: Energiemessgerät anschließen

ACHTUNG: Umstellung der Anzeige von KWh auf Wh

Ab der **Firmware** 1.12 werden die Werte der **Energiemessgeräte** von den Ladesteuerungen in Wh angezeigt und an das OCPP Backend übertragen. Nach einem Firmware-Update auf 1.12 oder höher müssen Sie die Konfiguration der **Energiemessgeräte** manuell anpassen.

	Modbus Address	# Rec	gister	Conversion unit	Value	
Voltage V1 (V)	0	2		0.1	227	ĵ_
Voltage V2 (V)	2	2		0.1	155	
Voltage V3 (V)	4	2		0.1	156	1
Current I1 (A)	12	2		0.001	0	- j
Current I2 (A)	14	2		0.001	0	
Current I3 (A)	16	2		0.001	0	
Active Power (W)	40	2		0.1	0	
Reactive Power (W)	44	2		0.1	0	
Apparent Power (W)	42	2		0.1	0	Ĩ
Power Factor	53	1		1	1000	
Energy Total (Wh)	62	2		100	2100	
Max. Power Charge Sequence (W)	0	0		0	0	
Mains Frequency (Hz)	55	1		0.1	50	j.
Max. Current I1 (A)	0	0		0.001	0	
Max. Current I2 (A)	0	0		0.001	0	
Max. Current I3 (A)	0	0		0.001	0	j
Reset 1 Address/Value	0	0			0	
Reset 2 Address/Value	0	0			0	
Communication						
	Metering Device		EEM-350			
	Baud Rate		9600	a.u. 1999		
	Register type		holding (UxU3)	•		
	Slop Bils		1 Dil	•		
	Polling cycle (ms)	2	1000			
	High Register First		2	0		
	Overcurrent Detection	Enabled				
				submit		
	Please reset the devic	ce after co	onfiguration	reset		

	Modbus Address	# Register	Con	version unit	Value
Voltage V1 (V)	50520	2	0.01		230
Voltage V2 (V)	50522	2	0.01		0
Voltage V3 (V)	50524	2	0.01	(0
Current I1 (A)	50528	2	0.00	1	0
Current I2 (A)	50530	2	0.00	1	0
Current I3 (A)	50532	2	0.00	1	0
Active Power (W)	50536	2	10		0
Reactive Power (W)	50538	2	10		0
Apparent Power (W)	50540	2	10		0
Power Factor	50542	2	1		0
Energy Total (Wh)	270	2	0.1		3014
Max. Power Charge Sequence (W)	0	0	0		0
Mains Frequency (Hz)	50526	2	0.01		50
Max. Current I1 (A)	51070	2	0.00	1	7
Max. Current I2 (A)	51072	2	0.00	1	0
Max. Current I3 (A)	51074	2	0.00	1	0
Reset 1 Address/Value	0	0	1		0
Reset 2 Address/Value	0	0			0
Communication	Netering Device	EEM-E	M357		
E	Baud Rate	9600			
F	Register type	holding	g (0x03) •		
S	Stop Bits	1 Bit	۲		
E	Energy Meter Address	5			
F	Polling cycle (ms)	1000			
ŀ	High Register First				

Degisterkarte En - -----Antor" für EEN EN257

Konfigurationsparameter Energiemessgerät

Die Konfiguration der Energiemessgeräte erlaubt unterschiedliche Zuordnungen von Messwerten zu den Anzeigefeldern.

Abweichungen von der Tabelle sind möglich und bei manchen Messgeräten notwendig. Das hängt davon ab, welche Daten vom Messgerät verfügbar sind. Beachten Sie hierzu auch die Dokumentation des von Ihnen eingesetzten Energiemessgeräts.

An die Ladesteuerung können Sie unterschiedliche Energiemessgeräte anbinden, die über den Webserver oder über Modbus/TCP konfiguriert werden. Die Konfiguration erfolgt über die Parameter nach folgender Tabelle.

Tabelle 8-9 Konfigurationsparameter Energiemessgerät

Parameter	Bedeutung			
Modbus Address	Adresse des entsprechenden Messwerts im Gerät in dezimaler Darstellung.			
# Register	Anzahl der Datenworte, mit denen der Messwert im Energiemessgerät bereitgestellt v Wenn hier eine "0" eingegeben wird, wird der entsprechende Wert nicht ausgelesen. ist notwendig, wenn das Energiemessgerät die entsprechende Werte nicht bereitstel Energiemessgeräte, die die Messwerte in mehr als zwei Datenworte kodieren, könner der Ladesteuerung nicht ausgelesen werden.			
Conversion Unit	Umrechnungsfaktor für ausgelesene Messwerte zur Darstellung auf dem Webserver. Ab- hängig vom Hersteller werden die Messwerte auf Energiemessgeräten mit unterschied- licher Bit-Wertigkeit bereitgestellt. Mit diesem Faktor erfolgt die Anpassung an die vor- gegebenen Einheiten (V, A, W, Wh, Hz) für die Anzeige auf dem Webserver.			
	Bei der erstmaligen Inbetriebnahme eines neuen Energiemessgeräts mit der Lade- steuerung empfehlen wir eine Plausibilitätskontrolle der angezeigten Messwerte und ggf. die Anpassung der Umrechnungsfaktoren.			
Value	Angezeigter Wert (siehe Registerkarte "Energy Meter" - Anzeigewerte)			
Communication				
Metering Device	Frei wählbare Bezeichnung zur Identifizierung des verwendeten Energiemessgeräts.			
Baud Rate	Übertragungsrate zwischen der Ladesteuerung und dem Energiemessgerät (2,4 kBit/s 115.200 kBit/s). Der hier eingestellte Wert muss mit dem am Energiemess- gerät eingestellten Wert übereinstimmen.			
Register Type	Auswahl, ob die Daten im Messgerät als Holding- oder Input-Register verfügbar sind.			
Stop Bits	Anzahl der Stoppbits bei der Übertragung der Daten (1 oder 2).			
Energy Meter Modbus Address	Adresse des Energiemessgeräts (0 254). Der hier eingestellte Wert muss mit dem am Energiemessgerät eingestellten Wert übereinstimmen.			
Polling cycle (ms)	Zeitabstand zwischen zwei Abfragezyklen. Beachten Sie, dass sich eine zu kurz gewählte Zykluszeit negativ auf die Leistungsfähigkeit des Systems auswirken kann, z. B. bei der Ethernet-Kommunikation.			
High Register First	Wählen Sie dieses Feld, wenn die Daten im Energiemessgerät in der Byte-Reihenfolge "Big Endian" dargestellt sind. Das signifikanteste Bit wird an der kleinsten Speicheradresse abgelegt.			
Overcurrent Detection	Wählen Sie dieses Feld, wenn die Überstromüberwachung aktiviert werden soll.			
Enabled	Bei einem Überstrom von I/Imax > 1,25 erfolgt die Abschaltung nach 10 s.			
	Bei einem Überstrom von I/Imax > 1,1 erfolgt die Abschaltung nach 100 s.			
	Ströme von I/Imax < 1,1 werden toleriert.			

Anzeigewert	Bedeutung
Energy Meter	•
Voltage V1 – V3 (V)	Spannung auf den drei Phasen. Entweder als Außenleiterspannung oder Spannung gegen den Neutralleiter, abhängig von der Konfiguration und den vom Energiemessgerät bereitgestellten Daten.
Current I1 – I3 (A)	Strom der drei Phasen
Active Power (W)	Wirkleistung
Reactive Power (W)	Blindleistung
Apparent Power (VA)	Scheinleistung
Power Factor	Leistungsfaktor/cos Phi
Energy Total (Wh)	Ablesewert eines nicht rücksetzbaren Zählwerks
Max Power Charge Sequence (W)	Maximale Leistung des aktuellen Ladevorgangs
Mains Frequency (Hz)	Aktuelle Netzfrequenz
Max. Current I1 – I3 (A)	Maximal gemessene Ströme auf den Leitern L1-L3 während des aktuellen Ladevorgangs
Reset 1 Address/Value	Durch das Schreiben von definierten Werten (maximal zwei Datenworte lang) in den
Reset 2 Address/Value	spezifizierten Adressbereich können bestimmte Messwerte im Energiemessgerät zurück- gesetzt werden. Die Ladesteuerung schreibt diese Werte automatisch nach der Be- endigung eines Ladevorgangs (Status A). Wenn für "# Register (02)" der Wert 0 ein- getragen wird, werden keine Werte zurückgesetzt.

 Tabelle 8-10
 Registerkarte "Energy Meter" - Anzeigewerte

8.7 Registerkarte "Card Reader"

Über die RS-485-Schnittstelle können RFID Kartenleser mit der Ladesteuerung verbunden werden, die das Modbus/RTU-Protokoll mit Input-Registern unterstützen. Die UIDs der Karten werden ausgelesen und können über Modbus/TCP weiter verarbeitet werden. Ebenso können bis zu 20 UIDs auf einer lokalen Whitelist über den Webserver editiert und abgespeichert werden.

	logiotoritario "our	a rioudor iu		
	RFID Enable			
	Baud Rate	115200		
	Card Reader Address	1		
	High Register First			
	Show in reverse order			
	Card Data Address	17		
	Card Data #Register	16		
	Buzzer Coil Address	0		
	sul	bmit		
Card Name	Whit Card UID	telist	Enab	ble
Card Name Last card	Whi t Card UID	telist	Enab	ble
Card Name Last card	Whit Card UID	telist	Enab	save
Card Name Last card	Card UID	telist	Enab	save save
Card Name Last card	Card UID	telist	Enab	save save save

Tabelle 8-11	Anzeigewerte Registerkarte "Card Reader"
--------------	--

Option	Bedeutung
Card Reader	
RFID Enable	Aktiviert den RFID Leser, Daten werden ausgelesen. Um die Freigabe über den RFID-Kartenleser zu steuern, setzen Sie zusätzlich DIP #10 = 1.
Baud Rate	Übertragungsrate zwischen der Ladesteuerung und dem Kartenleser (2,4 kBit/s115.200 kBit/s). Der hier eingestellte Wert muss mit dem am Kartenleser eingestellten Wert überein- stimmen.
Card Reader Address	Adresse des RFID-Kartenlesers (0 254) im Netzwerk. Der hier eingestellte Wert muss mit dem am Kartenleser eingestellten Wert überein- stimmen.
High Register First	Dieses Feld muss gewählt werden, wenn die Daten im Kartenleser in der Byte-Reihen- folge "Big Endian" dargestellt sind.
Card Data Address	Adresse, unter der die UID der RFID-Karte im Kartenleser abgelegt ist.
Card Data #Register	Anzahl der Datenregister, die für eine vollständige UID ausgelesen werden müssen.
Buzzer Coil Address	Adresse, unter der ein integrierter Buzzer des Kartenlesers aktiviert werden kann.
Whitelist	·
Last Card	Unique Identifier (UID) der letzten ausgelesenen RFID-Karte.

Option	Bedeutung
Card Name	Frei wählbarer Name, der einer RFID-Karte zugeordnet werden kann.
Card UID	Unique Identifier (UID) der RFID-Karte.
Enable	Freischaltung der RFID-Karte für den Ladevorgang.
Save	Speichern von "Card Name", "Card UID" und Freigabe in der Whitelist auf der Lade- steuerung.

Tabollo 8-11	Anzoigoworto Bogistorkarto, Card Boador"	F 1
	Anzeigeweite negisterkaite "Calu neauer	

Sie können eine ausgelesene UID in die Whitelist kopieren. Dort können Sie die UID mit einem Namen versehen und für Ladevorgänge freigeben.

8.8 Registerkarte "Remote Control"

Die Ladesteuerungen können Sie über ein Ethernet-Netzwerk zu einem Master-Slave-Verbund zusammenschalten. Der Master übernimmt die Kommunikation zum OCPP-Backend für alle angeschlossenen Ladepunkte. Als Master sind die 3G-Varianten geeignet.

Tabelle 8-12 Master-Slave-Verbund

Ladesteuerung	OCPP 1.6J-	Anzahl Slaves	
	Ethernet	Mobilfunk	
EV-CC-AC1-M3-CBC-RCM-ETH	-	-	-
EV-CC-AC1-M3-CBC-RCM-ETH-3G	-	x	5
EV-CC-AC1-M3-RCM-ETH-XP	x	-	-
EV-CC-AC1-M3-RCM-ETH-3G-XP	x	x	10

ACHTUNG: Gleiche Firmware-Version

Für den Master-Slave-Betrieb muss auf allen Geräten die gleiche Firmware-Version installiert sein. Führen Sie bei Bedarf ein Update der Geräte durch. Die aktuellste Version finden Sie zum Download auf <u>phoenixcontact.net/product/1018702.</u>

lid 8-8	Registerkarte "Remote	e Co	ntrol" (EV-CC	≻3G /	3G-XP))
	Master Slave Enable		•			
	Master Module					
	Priority Connector Enab	le				
	Priority Connector ID (0	- 5)	0			
	Priority Connector Curre	nt	0			
	Global Current Limit(Am	ips)	32			
	Minimum Connector Cur	rrent	10			
	Current Distribution Ena	ble				
	Slave 1 IP Address	192.1	68.0.9			
	Status Slave 1	CONM	NECTED			
	Slave 2 IP Address	0.0.0.	0			
	Status Slave 2	DISC	ONNECTED			
	Slave 3 IP Address	0.0.0.	0			
	Status Slave 3	DISC	ONNECTED			
	Slave 4 IP Address	0.0.0.	0			
	Status Slave 4	DISC	ONNECTED			
	Slave 5 IP Address	0.0.0.	0			
	Status Slave 5	DISC	ONNECTED			
	s	submit				

Master Status: CONNECTED

Option	Bedeutung
Master Slave Enable	Aktiviert die Master-Slave-Funktion.
Master Module	Legt fest, dass das Gerät der Master ist.
Priority Connector Enable	Einem Ladepunkt wird bevorzugt Ladestrom bereitgestellt. In diesem Fall werden OCPP- Ladeprofile für den Priority-Connector abgelehnt.
Priority Connector ID (0 - 5)	Zuweisung des Status "Priority Connector" zu einem Ladepunkt.
Priority Connector Current	Maximaler Ladestrom, der dem Priority-Connector zugewiesen werden soll.
Global Current Limit (Amps)	Maximaler Ladestrom, welcher dem Master-Slave-Verbund vom Netzanschlusspunkt zur Verfügung steht.
Minimum Connector Current (A)	Minimaler Ladestrom, den ein Ladepunkt annehmen kann.
Current Distribution Enable	Aktiviert das Lastmanagement. Diesen Parameter müssen Sie setzen, wenn die Master- Slave-Funktion aktiv ist und Ladeprofile vom Backend umgesetzt werden sollen.
Slave IP 15 Address (nur EV- CC3G /3G-XP)	IP-Adresse der jeweiligen Slaves.
Status Slave 15 (nur EV-CC- 3G /3G-XP)	Verbindungsstatus zum Slave (Connected / Disconnected)
Master Status nur EV-CC ETH /ETH-XP	Verbindungsstatus zum Master (Connected / Disconnected)

Tabelle 8-13 Registerkarte "Remote Control"

Hinweise zum Lastmanagement

Das Lastmanagement stellt sicher, dass der summierte Ladestrom des Master-Slave-Verbundes den Maximalstrom nicht überschreitet. Der Maximalstrom wird durch den Netzanschlusspunkt über den Wert "Global Current Limit" vorgegeben.

Das Lastmanagement stellt sicher, dass alle angeschlossenen Fahrzeuge mindestens mit dem Minimalstrom ("Minimum Connector Current") zeitgleich geladen werden können. Dazu darf der summierte Minimalstrom über alle Ladepunkte zusammen mit dem Minimalstrom am Priority-Connector den Maximalstrom ("Global Current Limit") nicht übersteigen.

Das Lastmanagement berücksichtigt die tatsächlich auftretenden Ladeströme an den einzelnen Ladepunkten, wenn es die Ladeströme den einzelnen Ladepunkten zuweist.

Der Priority-Connector kann immer mit seinem "Priority Connector Current" geladen werden.

Das Lastmanagement berücksichtigt nicht, ob Fahrzeuge ein- oder dreiphasig laden oder die Ladepunkte mit einer Phasendrehung mit dem Netz verbunden sind. In der Berechnung wird jeweils der größte an einem Ladepunkt gemessene Strom für alle Phasen angenommen.

Zu Beginn des Ladevorgangs wird der maximale Ladestrom ermittelt, mit dem ein Fahrzeug laden kann. Das Laden beginnt mit dem minimalen Ladestrom. Der Ladestrom wird kontinuierlich gesteigert, bis das Fahrzeug seinen maximalen Ladestrom erreicht hat. Hierfür müssen bei Bedarf Ladeströme an anderen Anschlüssen temporär reduziert werden.

	Es kann vorkommen, dass der durch den Netzanschluss verfügbare Ladestrom nicht aus- reichend ist. Wenn dadurch nicht alle Fahrzeuge mit dem jeweiligen Maximalstrom geladen werden können, so wird der Ladestrom an allen Ladepunkten anteilig reduziert. Alle Fahr- zeuge werden mit der gleichen relativen Ladeleistung geladen. Die relative Ladeleistung bezieht sich auf die maximale Ladeleistung des Fahrzeugs.
	Das Lastmanagement stellt sicher, dass der Priority-Connector immer mit dem "Priority Connector Current" geladen wird. Wenn am Priority-Connector weniger Strom benötigt wird, so steht dieser Ladestrom den anderen Ladepunkten zur Verfügung.
	Wenn ein Fahrzeug seine Ladestrom reduziert oder den Ladevorgang beendet, so werden die verfügbaren Ladeströme den anderen Ladepunkten anteilig zugewiesen.
	Da einzelne Fahrzeuge im unteren Bereich ggf. nicht geladen werden können, empfehlen wird ein "Minimum Connector Current" von 10 A.
	OCPP-Ladeprofile und Lastmanagement
	Um im Master-Slave-Verbund auch über OCPP Ladeprofile nutzen zu können, müssen Sie die Funktion "Current Distribution Enable" aktivieren. Wenn dieses Feld nicht aktiviert ist, werden gesendete Ladeprofile von der Ladesteuerung abgewiesen.
OCPP MaxProfile	Ein "MaxProfile" limitiert den Ladestrom, der am Netzanschlusspunkt (Connector 0) be- zogen wird. Der Master verteilt den Ladestrom auf die Ladepunkte nach den angegebenen Kriterien. Wenn der Stromwert vom "MaxProfile" größer ist als der Wert von "Global Current Limitation", wird das "MaxProfile" ignoriert.
OCPP TxDefaultProfile und TxProfile	"TxDefaultProfile" und "TxProfile" sind spezifisch für einen Ladepunkt bzw. eine Transaktion. Die "TxDefaultProfile" vom Connector 0 werden auf alle angeschlossenen Connectoren angewendet. Wenn für einen Connector oder eine Transaktion Stromvor- gaben vom Lastmanagement und vom OCPP-Backend vorliegen, so wird der niedrigere Wert angewendet.

Modbus-Beschreibung 9

Sie können über Modbus auf die Register des Geräts zugreifen. Das Gerät arbeitet als Modbus-Slave mit der Adresse 255. Es wartet am Port 502 auf eingehende Modbus/TCP-Anfragen.

9.1 **Modbus-Registerarten**

Modbus/RTU ermöglicht drei Registerarten, die wie folgt benutzt werden:

Tabelle 9-1 Modbus-Registerarten

Modbus-Register Typ	Wert	Zugriff
Input	16 Bit	Lesen
Discrete	1 Bit	Lesen
Holding	16 Bit	Lesen/Schreiben
Coils	1 Bit	Lesen/Schreiben

Sie können mehrere Input- und Holding-Register zusammenfassen, um 32-Bit-Daten Sie können menrere Input- und Holding-Hegister Zudahmender zu übertragen. Die Kodierung für solche Daten ist im Little-Endian-Format. Das Wort mit dem niederwertigsten Element wird zuerst genannt.

9.2 Registerzuordnung

Die folgende Tabelle zeigt, wie die Geräteinformationen Registern zugeordnet werden, die über Modbus erreichbar sind.

Soweit nicht anders angegeben, handelt es sich um dezimale Zahlenwerte.

Tabelle 9-2 Registerzuordnung, Typ Input

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Input	100	16 Bit	Lesen	Systemstatus nach IEC 61851-1, Annex A	ASCII (8 Bit), A… F
Input	101	16 Bit	Lesen	Stromtragfähigkeit Ladekabel (Proximity)	Integer, Ampere
Input	102	32 Bit	Lesen	Ladezeit	Integer, Sekunden
Input	103				
Input	104	16 Bit	Lesen	DIP-Schalter Konfiguration	Binär, DIP 1 = LSB
					Jeder Schalter entspricht einem Bit.
Input	105	32 Bit	Lesen	Firmware-Version	ASCII,
Input	106				z. B. 1.21 = 0x2E31 0x3132

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung	
Input	107	16 Bit	Lesen	Fehlercodes	Hexadezimal	
					Bit Fehler	
					1. Kabelabweisung 13 A und 20 A	
					2. Kabelabweisung 13 A	
					3. Ungültiger PP-Wert	
					4. Ungültiger CP-Wert	
					5. Status F wegen fehlender Ver- fügbarkeit der Ladestation	
					6. Verriegelung	
					7. Entriegelung	
					 LD ist während Verriegelung weggefallen 	
					9. Überstromabschaltung	
					 Kommunikationsproblem Ladesteuerung - Energie- messgerät bei aktivierter Überstromabschaltung 	
					11. Status D, Fahrzeug ab-	
					gewiesen	
					12. Schützfehler erkannt	
					13. Fahrzeugseitig keine Diode im Control Pilot Kreis	
					14. Reserviert	
					15. Fehlerstrom detektiert	
					16. Master-Slave Kommunikationsfehler	
					Register 155)	
Input	108	32 Bit	Lesen	Anzeige Energiemessgerät	Integer [V]	
Input	109			Spannung V1		
Input	110	32 Bit	Lesen	Anzeige Energiemessgerät		
Input	111			Spannung V2		
Input	112	32 Bit	Lesen	Anzeige Energiemessgerät		
Input	113			Spannung VS		
Input	114	32 Bit	Lesen	Anzeige Energiemessgerät Strom	Integer [A]	
Input	115					
Input	116	32 Bit	Lesen	Anzeige Energiemessgerät Strom		
Input	117			12		
Input	118	32 Bit	Lesen	Anzeige Energiemessgerät Strom		
Input	119			13		

 Tabelle 9-2
 Registerzuordnung, Typ Input [...]
Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Input	120	32 Bit	Lesen	Anzeige Energiemessgerät	Integer [W, (VA, var)]
Input	121			Wirkleistung	
Input	122	32 Bit	Lesen	Anzeige Energiemessgerät Blind-	
Input	123			leistung	
Input	124	32 Bit	Lesen	Anzeige Energiemessgerät	
Input	125			Scheinleistung	
Input	126	32 Bit	Lesen	Anzeige Energiemessgerät	Integer [Cos Phi/1000]
Input	127			Leistungsfaktor	
Input	128	32 Bit	Lesen	Anzeige Energiemessgerät	Integer [kWh]
Input	129			Energie (total)	Anzeige in [Wh]: siehe Register 904 (Holding)
Input	130	32 Bit	Lesen	Anzeige Energiemessgeräte	Integer [W]
Input	131			maximale Leistung	
Input	132	32 Bit	Bit Lesen Anzeige Energie aktueller	Anzeige Energie aktueller	Integer [kWh]
Input	133			Ladevorgang	Anzeige in [Wh]: siehe Register 3376 (Holding)
Input	134	32 Bit	Lesen	Anzeige Energiemessgerät Netz-	Integer [Hz]
Input	135			trequenz	
Input	136	32 Bit	Lesen Anzeige Energ	Anzeige Energiemessgeräte	Integer [A]
Input	137			maximaler Strom I1	
Input	138	32 Bit	Lesen	Anzeige Energiemessgeräte	
Input	149			maximaler Strom I2	
Input	140	32 Bit	Lesen	Anzeige Energiemessgeräte	
Input	141			maximaler Strom 13	
Input	142	16 Bit	Lesen	OCPP-Konfiguration "PricePerkWh"	Integer [cent]
Input	143	16 Bit	Lesen	OCPP-Konfiguration "HeartbeatInterval"	Integer [s]
Input	144	16 Bit	Lesen	OCPP-Konfiguration "ConnectionTimeOut"	Integer [s]
Input	145	16 Bit	Lesen	OCPP-Konfiguration "MeterValueSampleInterval"	Integer [s]
Input	146	16 Bit	Lesen	OCPP-Konfiguration "ResetRetries"	Integer

 Tabelle 9-2
 Registerzuordnung, Typ Input [...]

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Input	147	16 Bit	Lesen	OCPP-Konfiguration "TransactionMessageAttempts"	Integer
Input	148	16 Bit	Lesen	OCPP-Konfiguration "Transaction MessageRetryInterval"	Integer [s]
Input	155	16 Bit	Lesen	Fortsetzung Fehlercodes	Hexadezimal
					Bit Fehler
					1. Ladestation offline (wenn über Register 432 aktiviert)
					2. Fehlerstatus über digitalen Eingang (Error Input)
					3. Reserviert
					4. Selbsttest DC-Fehlerstrom- sensor fehlgeschlagen
					5. Fehler DC-Fehlerstromsensor
					6. Fehlerstrom > 6 mA DC
					7. Fehlerstrom > 30 mA AC

 Tabelle 9-2
 Registerzuordnung, Typ Input [...]

Tabelle 9-3 Registerzuordnung, Typ Discrete

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Discrete	200	1 Bit	Lesen	Status digitaler Eingang LD	1 Bit
Discrete	201	1 Bit	Lesen	Status digitaler Eingang EN	1 Bit
Discrete	202	1 Bit	Lesen	Status digitaler Eingang ML	1 Bit
Discrete	203	1 Bit	Lesen	Status digitaler Eingang XR	1 Bit
Discrete	204	1 Bit	Lesen	Status digitaler Ausgang ER	1 Bit
Discrete	205	1 Bit	Lesen	Status digitaler Ausgang LR	1 Bit
Discrete	206	1 Bit	Lesen	Status digitaler Ausgang VR	1 Bit
Discrete	207	1 Bit	Lesen	Status digitaler Ausgang CR	1 Bit
Discrete	208	1 Bit	Lesen	Status digitaler Eingang IN	1 Bit

 Tabelle 9-4
 Registerzuordnung, Typ Holding

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Holding	300	16 Bit	Lesen	Eingestellter Ladestrom (PWM- Signal)	Integer [A]
Holding	301	3 x 16 Bit	Lesen	MAC-Adresse	Hexadezimal
Holding	302				z. B. 00:A0:45:66:4F:40:
Holding	303				0xA000 0x6645 0x404F

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Holding	304	6 x 16 Bit	Lesen	Seriennummer	ASCII, z. B. 00000041 = 0x3030
Holding	305				0x3030 0x3030 0x3134
Holding	306				
Holding	307				
Holding	308				
Holding	309				
Holding	310	5 x 16 Bit	Lesen/Schreiben	Gerätename	ASCII, Hexadezimal kodierte
Holding	311				Zeichen, z. B. "Smart"
Holding	312				0x6D530x726100x0074x0000
Holding	313				
Holding	314				
Holding	315	4 x 16 Bit	Lesen/Schreiben	IP-Adresse	Dezimal
Holding	316				z. B. 192.168.0.8
Holding	317				(Default)
Holding	318				
Holding	319	4 x 16 Bit	Lesen/Schreiben	Subnetzmaske	Dezimal
Holding	320				z. B. 255.255.255.0
Holding	321				(Default)
Holding	322				
Holding	323	4 x 16 Bit	Lesen/Schreiben	Gateway	Dezimal
Holding	324				z. B. 192.168.0.1
Holding	325				(Default)
Holding	326				
Holding	327	16 Bit	Lesen/Schreiben	Definition Ausgang ER	Dezimal, siehe Tabelle 9-6
Holding	328	16 Bit	Lesen/Schreiben	Definition Ausgang LR	"Funktionszuordnung der
Holding	329	16 Bit	Lesen/Schreiben	Definition Ausgang VR	uigitaleli Ausyaliye
Holding	330	16 Bit	Lesen/Schreiben	Definition Ausgang CR	

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Register	adressen z				
Holding	331	16 Bit	Lesen/Schreiben	Spannung V1	Integer, nach der Dokumentation
Holding	332	16 Bit	Lesen/Schreiben	Spannung V2	des angeschlossenen Energie-
Holding	333	16 Bit	Lesen/Schreiben	Spannung V3	(Default: Energiemessgerät
Holding	334	16 Bit	Lesen/Schreiben	Strom I1	EEM-350-D-MCB von
Holding	335	16 Bit	Lesen/Schreiben	Strom I2	Phoenix Contact)
Holding	336	16 Bit	Lesen/Schreiben	Strom I3	
Holding	337	16 Bit	Lesen/Schreiben	Wirkleistung	
Holding	338	16 Bit	Lesen/Schreiben	Blindleistung	
Holding	339	16 Bit	Lesen/Schreiben	Scheinleistung	
Holding	340	16 Bit	Lesen/Schreiben	Leistungsfaktor	
Holding	341	16 Bit	Lesen/Schreiben	Energiemessgerät, total	
Holding	342	16 Bit	Lesen/Schreiben	Maximale Leistung (aktueller Ladevorgang)	
Holding	343	16 Bit	Lesen/Schreiben	Energiemessgerät, rücksetzbar	
Holding	344	16 Bit	Lesen/Schreiben	Netzfrequenz	
Holding	345	16 Bit	Lesen/Schreiben	Maximaler Strom I1	
Holding	346	16 Bit	Lesen/Schreiben	Maximaler Strom I2	
Holding	347	16 Bit	Lesen/Schreiben	Maximaler Strom I3	
Holding	348	16 Bit	Lesen/Schreiben	Rücksetzregister 1	
Holding	349	16 Bit	Lesen/Schreiben	Rücksetzwert 1	
Holding	350	16 Bit	Lesen/Schreiben	Rücksetzregister 2	
Holding	351	16 Bit	Lesen/Schreiben	Rücksetzwert 2	

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung				
Register	Registeradressen zum Anschluss eines Energiemessgeräts ab Firmware 1.12								
Holding	331	16 Bit	Lesen/Schreiben	Spannung V1	Integer, nach der Dokumentation				
Holding	332	16 Bit	Lesen/Schreiben	Spannung V2	des angeschlossenen Energie-				
Holding	333	16 Bit	Lesen/Schreiben	Spannung V3	(Default: Energiemessgerät				
Holding	334	16 Bit	Lesen/Schreiben	Strom I1	EEM-EM357 von				
Holding	335	16 Bit	Lesen/Schreiben	Strom I2	Phoenix Contact)				
Holding	336	16 Bit	Lesen/Schreiben	Strom I3					
Holding	337	16 Bit	Lesen/Schreiben	Wirkleistung					
Holding	338	16 Bit	Lesen/Schreiben	Blindleistung					
Holding	339	16 Bit	Lesen/Schreiben	Scheinleistung					
Holding	340	16 Bit	Lesen/Schreiben	Leistungsfaktor					
Holding	344	16 Bit	Lesen/Schreiben	Netzfrequenz					
Holding	345	16 Bit	Lesen/Schreiben	Maximaler Strom I1					
Holding	346	16 Bit	Lesen/Schreiben	Maximaler Strom I2					
Holding	347	16 Bit	Lesen/Schreiben	Maximaler Strom I3					
Holding	348	16 Bit	Lesen/Schreiben	Rücksetzregister 1					
Holding	349	16 Bit	Lesen/Schreiben	Rücksetzwert 1					
Holding	350	16 Bit	Lesen/Schreiben	Rücksetzregister 2					
Holding	351	16 Bit	Lesen/Schreiben	Rücksetzwert 2					
Holding	900	16 Bit	Lesen/Schreiben	Energiemessgerät, total					

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Umrech	nungsfakto	oren der Wei	te aus dem Energ	iemessgerät bis Firmware 1.11	
Holding	352	32 Bit	Lesen/Schreiben	Spannung V1	Dezimal
Holding	353				Energiemessgerät
Holding	354	32 Bit	Lesen/Schreiben	Spannung V2	EEM-350-D-MCB von
Holding	355				
Holding	356	32 Bit	Lesen/Schreiben	Spannung V3	
Holding	357				
Holding	358	32 Bit	Lesen/Schreiben	Strom I1	
Holding	359				
Holding	360	32 Bit	Lesen/Schreiben	Strom I2	
Holding	361				
Holding	362	32 Bit	Lesen/Schreiben	Strom I3	
Holding	363				
Holding	364	32 Bit	Lesen/Schreiben	Wirkleistung	
Holding	365				
Holding	366	32 Bit	Lesen/Schreiben	Blindleistung	
Holding	367				
Holding	368	32 Bit	Lesen/Schreiben	Scheinleistung	
Holding	369				
Holding	370	32 Bit	Lesen/Schreiben	Leistungsfaktor	
Holding	371				
Holding	372	32 Bit	Lesen/Schreiben	Energiemessgerät, total	
Holding	373				
Holding	374	32 Bit	Lesen/Schreiben	Maximale Leistung (aktueller	
Holding	375			Ladevorgang)	
Holding	376	32 Bit	Lesen/Schreiben	Energiemessgerät, rücksetzbar	
Holding	377				
Holding	378	32 Bit	Lesen/Schreiben	Netzfrequenz	
Holding	379				
Holding	380	32 Bit	Lesen/Schreiben	Maximaler Strom I1	
Holding	381				
Holding	382	32 Bit	Lesen/Schreiben	Maximaler Strom I2	
Holding	383				
Holding	384	32 Bit	Lesen/Schreiben	Maximaler Strom I3	
Holding	385				

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Umrech	nungsfakto	ren der Wei	rte aus dem Energ	iemessgerät ab Firmware 1.12	
Holding	352	32 Bit	Lesen/Schreiben	Spannung V1	Dezimal
Holding	353				Energiemessgerät EEM-EM357
Holding	354	32 Bit	Lesen/Schreiben	Spannung V2	von Phoenix Contact
Holding	355				
Holding	356	32 Bit	Lesen/Schreiben	Spannung V3	
Holding	357				
Holding	358	32 Bit	Lesen/Schreiben	Strom I1	
Holding	359				
Holding	360	32 Bit	Lesen/Schreiben	Strom I2	
Holding	361				
Holding	362	32 Bit	Lesen/Schreiben	Strom I3	
Holding	363				
Holding	364	32 Bit	Lesen/Schreiben	Wirkleistung	
Holding	365				
Holding	366	32 Bit	Lesen/Schreiben	Blindleistung	
Holding	367				
Holding	368	32 Bit	Lesen/Schreiben	Scheinleistung	
Holding	369				
Holding	370	32 Bit	Lesen/Schreiben	Leistungsfaktor	
Holding	371				
Holding	902	32 Bit	Lesen/Schreiben	Energiemessgerät, total	
Holding					
Holding	378	32 Bit	Lesen/Schreiben	Netzfrequenz	
Holding	379				
Holding	380	32 Bit	Lesen/Schreiben	Maximaler Strom I1	
Holding	381				
Holding	382	32 Bit	Lesen/Schreiben	Maximaler Strom I2	
Holding	383				
Holding	384	32 Bit	Lesen/Schreiben	Maximaler Strom I3	
Holding	385				
Holding	902	32 Bit	Lesen/Schreiben	Energiemessgerät, total	
Holding					

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Kommu	nikationspa	arameter			•
Holding	386	32 Bit	Lesen/Schreiben	Baud-Rate Kommunikation zum	Integer, Default = 9600
Holding	387			Energiemessgerät	Max 115.200
Holding	388	16 Bit	Lesen/Schreiben	Modbus-Adresse Energie- messgerät	Integer, Default = 5 (bis Firmware < 1.21: Default = 1")
Holding	389	16 Bit	Lesen/Schreiben	Abfragezyklus Energiemess- gerät	Integer (ms), Default = 1000
Holding	390	16 Bit	Lesen/Schreiben	Aktivierung Ladeschützüber- wachung	 Integer Inaktiv Spannungserkennung über Eingang CT Auswertung NO-Hilfs- kontakt Auswertung NC-Hilfs- kontakt Auswertung Spannungs- messung Energiemessgerät
Holding	391	8 x 16 Bit	Lesen/Schreiben	Benennung Energiemessgerät	ASCII hexkodiert, 15 Zeichen +
Holding	392				F68
Holding	393				
Holding	394				
Holding	395				
Holding	396				
Holding	397				
Holding	398	1			

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung			
Anzahl D	Anzahl Datenwörter der Messwerte bis Firmware 1.11							
Holding	500	16 Bit	Lesen/Schreiben	Spannung V1	Integer (0-2)			
Holding	501	16 Bit	Lesen/Schreiben	Spannung V2	(Entsprechend Phoenix Contact			
Holding	502	16 Bit	Lesen/Schreiben	Spannung V3	Energiemessgerät EEM-350-D-MCB)			
Holding	503	16 Bit	Lesen/Schreiben	Strom I1				
Holding	504	16 Bit	Lesen/Schreiben	Strom I2				
Holding	505	16 Bit	Lesen/Schreiben	Strom I3				
Holding	506	16 Bit	Lesen/Schreiben	Wirkleistung				
Holding	507	16 Bit	Lesen/Schreiben	Blindleistung				
Holding	508	16 Bit	Lesen/Schreiben	Scheinleistung				
Holding	509	16 Bit	Lesen/Schreiben	Leistungsfaktor				
Holding	510	16 Bit	Lesen/Schreiben	Energiemessgerät total				
Holding	511	16 Bit	Lesen/Schreiben	Maximale Leistung (aktueller Ladevorgang)				
Holding	512	16 Bit	Lesen/Schreiben	Energiemessgerät rücksetzbar				
Holding	513	16 Bit	Lesen/Schreiben	Netzfrequenz				
Holding	514	16 Bit	Lesen/Schreiben	Maximaler Strom I1				
Holding	515	16 Bit	Lesen/Schreiben	Maximaler Strom I2				
Holding	516	16 Bit	Lesen/Schreiben	Maximaler Strom I3				
Holding	517	16 Bit	Lesen/Schreiben	Reset Energiemessgerät 1				
Holding	518	16 Bit	Lesen/Schreiben	Reset Energiemessgerät 2				

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung			
Anzahl [Anzahl Datenwörter der Messwerte ab Firmware 1.12							
Holding	500	16 Bit	Lesen/Schreiben	Spannung V1	Integer (0-2)			
Holding	501	16 Bit	Lesen/Schreiben	Spannung V2	(Entsprechend Phoenix Contact			
Holding	502	16 Bit	Lesen/Schreiben	Spannung V3	Energiemessgerät EEM-EM357)			
Holding	503	16 Bit	Lesen/Schreiben	Strom I1				
Holding	504	16 Bit	Lesen/Schreiben	Strom I2				
Holding	505	16 Bit	Lesen/Schreiben	Strom I3				
Holding	506	16 Bit	Lesen/Schreiben	Wirkleistung				
Holding	507	16 Bit	Lesen/Schreiben	Blindleistung				
Holding	508	16 Bit	Lesen/Schreiben	Scheinleistung				
Holding	509	16 Bit	Lesen/Schreiben	Leistungsfaktor				
Holding	513	16 Bit	Lesen/Schreiben	Netzfrequenz				
Holding	514	16 Bit	Lesen/Schreiben	Maximaler Strom I1				
Holding	515	16 Bit	Lesen/Schreiben	Maximaler Strom I2				
Holding	516	16 Bit	Lesen/Schreiben	Maximaler Strom I3				
Holding	517	16 Bit	Lesen/Schreiben	Reset Energiemessgerät 1				
Holding	518	16 Bit	Lesen/Schreiben	Reset Energiemessgerät 2				
Holding	901	16 Bit	Lesen/Schreiben	Energiemessgerät total				
Anzahl [Datenwörte	r der Messw	verte					
Holding	519	16 Bit	Lesen/Schreiben	Wartezeit Auswertung Schütz- überwachung	Integer (ms), Default 500 ms			
Holding	520	16 Bit	Lesen/Schreiben	Definition Eingang LD	Dezimal			
Holding	521	16 Bit	Lesen/Schreiben	Definition Eingang EN	siehe Tabelle 9-7 "Funktions-			
Holding	522	16 Bit	Lesen/Schreiben	Definition Eingang ML	zuordnung der digitalen Ein-			
Holding	523	16 Bit	Lesen/Schreiben	Definition Eingang XR	gange			
Holding	524	16 Bit	Lesen/Schreiben	Definition Eingang IN				
Holding	525	16 Bit	Lesen/Schreiben	Ansteuerungszeit Verriegelung in ms	Integer (ms), Default 500 ms			
Holding	526	16 Bit	Lesen/Schreiben	Ansteuerungszeit Entriegelung in ms	Integer (ms), Default 500 ms			
Holding	527	16 Bit	Lesen/Schreiben	Zeit zwischen Wiederholungen der Verriegelungsansteuerung	Integer (ms), Default 2000 ms			
Holding	528	1 x 16 Bit	Lesen/Schreiben	Vorgabe Ladestrom	Vorgabe Ladestrom			

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Holding	529	11 x 16 Bit	Lesen	ICCID SIM-Kartennummer	ASCII (nur relevant für EV-CC-
Holding	530			(Integrated Circuit Card	AC1-M3-CBC-RCM-ETH-3G)
Holding	531			Identifier)	
Holding	532				
Holding	533				
Holding	534				
Holding	535				
Holding	536				
Holding	537				
Holding	538				
Holding	539				
Holding	575	16 Bit	Lesen/Schreiben	PIN-Nummer der SIM-Karte	Dezimal 0000 – 9999 (nur relevant für EV-CC-AC1-M3- CBC-RCM-ETH-3G)
Holding	576	16 Bit	Lesen	RSSI - Received Signal Strength Indicator	Dezimal, RSSI = 120 dB - "Wert" (nur relevant für EV-CC-AC1- M3-CBC-RCM-ETH-3G)
Holding	577	4 x 16 Bit	Lesen	IMEI - International Mobile	Dezimal (nur relevant für EV-CC-
Holding	578	-		Equipment Identity	AC1-M3-CBC-RCM-ETH-3G)
Holding	579				
Holding	580				
Holding	600	16 Bit	Lesen/Schreiben	Modbus-Adresse Kartenleser	Dezimal, Default 1
Holding	601	2 x 16 Bit	Lesen/Schreiben	Modbus-Baudrate Kartenleser	Dezimal, Default 115200
Holding	602				
Holding	603	16 Bit	Lesen/Schreiben	RFID Card Reader	Dezimal, Default: 0
				Buzzer Coil Adresse	
Holding	604	16 Bit	Lesen/Schreiben	RFID-Karten: Anzahl Daten- worte	Dezimal, Default: 16
Holding	605	16 Bit	Lesen/Schreiben	RFID-Karten: Daten Modbus- Adresse	Dezimal, Default: 17

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Holding	606	16 x 16 Bit	Lesen	RFID-Karten UID	32 Zeichen, Hexadezimal 0-F
Holding	607				Beispiel: 450ECA25
Holding	608				
Holding	609				[606]: 0x3235
Holding	610				[607]: 0x4341
Holding	611				[608]: 0x3045
Holding	612				[609]: 0x3435
Holding	613				[610]: 0x0000
Holding	614				
Holding	615				
Holding	616				
Holding	617				
Holding	618				
Holding	619				
Holding	620				
Holding	621				
Holding	622	16 Bit	Lesen/Schreiben	Port für OCPP-Kommunikation	Integer
Holding	623	32 x 16 Bit	Lesen/Schreiben	OCPP-Host	ASCII
Holding	655	32 x 16 Bit		OCPP-Pfad	(Nicht weiter benutzen, ver- schoben auf Register 3403)
Holding	3403	64 x 16 Bit	Lesen/Schreiben	OCPP-Pfad	ASCII
Holding	687	20 x 16 Bit	Lesen/Schreiben	APN-Zugangspunkt im Mobil- funknetzwerk	ASCII
Holding	707	20 x 16 Bit		APN-User	ASCII
Holding	727	20 x 16 Bit	Lesen/Schreiben	APN-Passwort	ASCII
Holding	747	20 x 16 Bit	Lesen/Schreiben	OCPP-Parameter "Vendor"	ASCII
Holding	767	20 x 16 Bit	Lesen/Schreiben	OCPP-Parameter "Model"	ASCII
Holding	800	8 Bit		"Reset to Factory"	"1" = Rücksetzen auf Werkseinstellungen
Holding	860	8 Bit	Lesen	Modem verfügbar	"1" = Modem vorhanden
Holding	904	32 Bit	Lesen	Energiezähler Total	Integer [Wh]
Holding	992	16 Bit	Lesen/Schreiben	Priority Connector ID	Integer [05]
Holding	994	16 Bit	Lesen/Schreiben	Priority Connector Current	Integer [A]
Holding	996	16 Bit		Minimum Connector Current	Integer [A]
Holding	3000	16 x 16 Bit	Lesen	Aktuelle Mobilfunk-Netz- betreiber	ASCII
Holding	3376	8 x 16 Bit	Lesen	Energie aktueller Ladevorgang	Integer [Wh]
Holding	3386	16 Bit	Lesen/Schreiben	Pulsdauer RFID-Buzzer	Integer [ms]

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Holding	3387	6 x 16 Bit	Lesen/Schreiben	FreeMode RFID UID	ASCII
Holding	3396	3 x 16 Bit	Lesen	Aktiver Mobilfunkstandard	ASCII
Holding	3403	64 x 16 Bit	Lesen/Schreiben	OCPP Pfad (erweitert)	ASCII

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
COIL	400	1 Bit	Lesen/Schreiben	Ladevorgang freigeben (Nur wenn DIP 10 = 1)	1 Bit
COIL	401	1 Bit	Lesen/Schreiben	Umstellung auf digitale Kommunikation (5 %)	1 Bit
COIL	402	1 Bit	Lesen/Schreiben	Verfügbarkeit Ladestation	1 Bit
COIL	403	1 Bit	Lesen/Schreiben	Verriegelung via Modbus (Nur wenn DIP 9 = 1)	1 Bit
COIL	404	1 Bit	Lesen/Schreiben	DHCP ein-/ausschalten	1 Bit
COIL	405	1 Bit	Lesen/Schreiben	Output-Register 1 steuern	1 Bit
COIL	406	1 Bit	Lesen/Schreiben	Output-Register 2 steuern	Funktionszuweisung zu den Aus-
COIL	407	1 Bit	Lesen/Schreiben	Output-Register 3 steuern	gängen siehe Tabelle 9-5 auf
COIL	408	1 Bit	Lesen/Schreiben	Output-Register 4 steuern	
COIL	409	1 Bit	Lesen/Schreiben	Überstromabschaltung aktivieren	1 Bit 0: Überwachung inaktiv 1: Überwachung aktiviert Auslösecharakteristik: I / Imax > 1,25: ca. 10 s I / Imax > 1,1: ca. 100 s
COIL	410	1 Bit	Lesen/Schreiben	Byte-Reihenfolge Kommunikation Energiemess- gerät	1 Bit, 0 = Little Endian, 1 = Big Endian
COIL	411				Reserviert
COIL	412	1 Bit	Lesen/Schreiben	Funktion "Status D, Fahrzeug abweisen" aktiviert	1 Bit
COIL	413	1 Bit	Lesen/Schreiben	Reset Ladesteuerung	1 Bit
COIL	414				Reserviert
COIL	415				Reserviert
COIL	416				Reserviert
COIL	417	1 Bit	Lesen/Schreiben	Firmware-Update starten	Webserver startet mit Dialogfenster zum Firmware-Up- date
COIL	418				Reserviert
COIL	419	1 Bit	Lesen/Schreiben	RFID-Kartenleser aktivieren	1 Bit
COIL	420	1 Bit	Lesen/Schreiben	Buzzer am RFID-Kartenleser aktiviert (permanent)	1 Bit
COIL	421	1 Bit	Lesen/Schreiben	Buzzer am RFID-Kartenleser aktiviert (Einzelpuls)	1 Bit
COIL	422	1 Bit	Lesen/Schreiben	Byte-Reihenfolge Kommunikation RFID-Karten- leser (Modbus/RTU)	1 Bit, 0 = Little Endian 1 = Big Endian

Tabelle 9-5Registerzuordnung, Typ COIL

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
COIL	423	1 Bit	Lesen	Freigabe über RFID-Whitelist aktiv	1 Bit
COIL	424	1 Bit	Lesen	RFID-Kartenleser: Karte er- kannt	Lebensdauer des Signals (je nach eingesetztem RFID-Kartenleser)
COIL	425	1 Bit	Lesen/Schreiben	RFID-Buzzer unterdrücken	Unterdrückung des Buzzer-Pulses für 60 s, anschließend wieder aktiv bzw. neu zu unterdrücken
COIL	426	1 Bit	Lesen/Schreiben	Master-Slave-Funktion aktivieren	1 Bit 1: Master-Slave aktiviert
COIL	427	1 Bit	Lesen/Schreiben	OCPP-Kommunikation aktivieren	1 Bit 1: OCPP-Kommunikation aktiv
COIL	428	1 Bit	Lesen/Schreiben	Web-Socket-Verbindung	1 Bit 0: Unverschlüsselt (WS) 1: Verschlüsselt (WSS)
COIL	431	1 Bit	Lesen/Schreiben	Unterdrückung des Buzzer- Signals bei abgelehnter RFID- Karte	1 Bit 0: Automatisches Buzzer-Signal bei ungültiger RFID-Karte 1: Kein Buzzer-Signal bei un- gültiger RFID-Karte
COIL	432	1 Bit	Lesen/Schreiben	Fehlerzustand, wenn Offline- Status erkannt wird	1 Bit 1: Ladestation geht im Offline- Status in einen Fehlerstatus
COIL	435	1 Bit	Lesen/Schreiben	Priority Connector Enable	1 Bit 1: Funktion "Priority Connector" aktiviert
COIL	436	1 Bit	Lesen	Ladevorgang freigeben	1 Bit 1: Ladevorgang freigeben (durch OCPP-Backend, Ethernet, RFID oder digitalen Eingang) 0: Ladevorgang nicht freigegeben
COIL	437	1 Bit	Lesen	Verbindung zum Master	1 Bit 1: Ladesteuerung hat Master er- kannt
COIL	438	1 Bit	Lesen/Schreiben	Ladesteuerung ist das Master- Modul	1 Bit 1: Ladesteuerung ist Master im Master-Slave-Verbund
COIL	439	1 Bit	Lesen/Schreiben	OCPP-Interface	1 Bit 0: OCPP über Mobilfunk 1: OCPP über Ethernet (nurXP Version)
COIL	440	1 Bit	Lesen/Schreiben	Entriegelung (unabhängig von der Position von DIP 9)	1 Bit 1: Ladepunkt wird entriegelt
COIL	441	1 Bit	Lesen	Verbindungsstatus Slave 1	1 Bit 1: Slave 1 mit Master verbunden

 Tabelle 9-5
 Registerzuordnung, Typ COIL [...]

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung	
COIL	442	1 Bit	Lesen	Verbindungsstatus Slave 2	1 Bit 1: Slave 2 mit Master verbunden	
COIL	443	1 Bit	Lesen	Verbindungsstatus Slave 3	1 Bit 1: Slave 3 mit Master verbunden	
COIL	444	1 Bit	Lesen	Verbindungsstatus Slave 4	1 Bit 1: Slave 4 mit Master verbunden	
COIL	445	1 Bit	Lesen	Verbindungsstatus Slave 5	1 Bit 1: Slave 5 mit Master verbunden	
COIL	446	1 Bit	Lesen	Verbindungsstatus Slave 6	1 Bit 1: Slave 6 mit Master verbunden (nurXP Version)	
COIL	447	1 Bit	Lesen	Verbindungsstatus Slave 7	1 Bit 1: Slave 7 mit Master verbunden (nurXP Version)	
COIL	448	1 Bit	Lesen	Verbindungsstatus Slave 8	1 Bit 1: Slave 8 mit Master verbunden (nurXP Version)	
COIL	449	1 Bit	Lesen	Verbindungsstatus Slave 9	1 Bit 1: Slave 9 mit Master verbunden (nurXP Version)	
COIL	450	1 Bit	Lesen	Verbindungsstatus Slave 10	1 Bit 1: Slave 10 mit Master verbunden (nurXP Version)	
COIL	462	1 Bit	Lesen/Schreiben	OCPP-Freigabe	1 Bit 1 (Lesen): Freigabe über OCPP liegt vor 0 (Schreiben): Ladevorgang wird beendet, OCPP-StopTransaction mit "Reason=Local" (nur auf der Master-Lade- steuerung)	
COIL	463	1 Bit	Lesen/Schreiben	Aktivierung "Freemode when Offline"	1 Bit 1: "FreemodeWhenOffline" aktiviert	
COIL	464	1 Bit	Lesen/Schreiben	Aktivierung "Current Dis- tribution Enable"	1 Bit 1: Funktion "CurrentDistributionEnable" aktiviert	
COIL	465	1 Bit	Lesen	Status Verriegelung	1 Bit 1: Ladestecker verriegelt	
COIL	466	1 Bit	Lesen/Schreiben	Aktivierung "Freemode after Power Loss"	1 Bit 1: "FreemodeAfterPowerLoss" aktiviert	
COIL	467	1 Bit	Lesen	Status "Suspended EVSE" (Ladevorgang pausiert)	1 Bit: 1: OCPP Status "SuspendedEVSE" aktiv	

 Tabelle 9-5
 Registerzuordnung, Typ COIL [...]

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
COIL	468	1 Bit	Lesen/Schreiben	Ladevorgang pausieren	1 Bit: 1: Ladevorgang wird unter- brochen, OCPP-Statusmeldung "SuspendedEVSE" wird gesendet
COIL	469	1 Bit	Lesen/Schreiben	Modbus-Registertyp des Energiezählers	1 Bit 0: Holding (0x03) 1: Input (0x04)
COIL	470	1 Bit	Lesen/Schreiben	Modbus-Stoppbits des Energiezählers	1 Bit 0: 1 Bit 1: 2 Bits

 Tabelle 9-5
 Registerzuordnung, Typ COIL [...]

9.3 Funktionszuordnung Ein- und Ausgangsregister

Sie können den digitalen Ein- und Ausgängen unterschiedliche Funktionen zuordnen, indem Sie in den Registern entsprechende Werte verwenden:

- Register 327 bis 330 f
 ür die digitalen Ausg
 änge (Funktionszuordnung der digitalen Ausg
 änge)
- Register 520 bis 524 f
 ür die digitalen Eing
 änge (Funktionszuordnung der digitalen Eing
 änge)

Tabelle 9-6 Funktionszuordnung der digitalen Ausgänge

Wert	Funktion
0	Inaktiv
1	Ladesteuerung im Status A
2	Ladesteuerung im Status B
3	Ladesteuerung im Status B und PWM EIN
4	Ladesteuerung im Status B und PWM AUS
5	Ladesteuerung im Status C
6	Ladesteuerung im Status D
7	Ladesteuerung im Status E
8	Ladesteuerung im Status F
9	Ladesteuerung im Status A oder B
10	Ladesteuerung im Status A oder B und PWM EIN
11	Ladesteuerung im Status A oder B und PWM AUS
12	Ladesteuerung im Status A, B oder C
13	Ladesteuerung im Status A, B oder D
14	Ladesteuerung im Status A bis D
15	Ladesteuerung im Status E oder F (Default für Ausgang ER)
16	Ladesteuerung im Status C oder D (Default für Ausgang VR)
17	PWM EIN (Default für Ausgang CR)
18	Gültiger Proximity erkannt
19	Ungültiger Proximity erkannt
20	13-A-Ladestecker erkannt
21	20-A-Ladestecker erkannt
22	32-A-Ladestecker erkannt
23	63-A-Ladestecker erkannt
24	13-A- oder 20-A-Ladestecker erkannt
25	13-A-, 20-A- oder 32-A-Ladestecker erkannt
26	Ladestecker mit geringer Stromtragfähigkeit abgewiesen
27	Ladesteuerung schaltet das Ladeschütz EIN
28	Status D Belüftung an
29	Verriegelung aktiv (Default für Ausgang LR)
30	Register Ausgang 1

Tabelle 9-6	Funktionszuordnung	der digitalen	Ausgänge [1

Wert	Funktion
31	Register Ausgang 2
32	Register Ausgang 3
33	Register Ausgang 4
34	Überstrom detektiert
35	Ladeschützüberwachung ausgelöst
36	Status D, Fahrzeug abgewiesen
37	Fahrzeug angeschlossen im Status B oder C oder D
38	Reserviert für zukünftige Funktion
39	Autorisierungsstatus (Blinken: Autorisierung in Arbeit, Permanent: Freigabe liegt vor)

Wert	Funktion
0	Inaktiv
1	Freigabe Ladevorgang permanentes High-Signal (Default für Eingang EN)
2	Verfügbarkeit Ladestation (Default für Eingang XR)
3	Rückmeldung Verriegelung Ladestecker (Default für Eingang LD)
4	Verriegelung (permanentes High-Signal)
5	Schützüberwachung über NO-Hilfskontakt
6	Schützüberwachung über NC-Hilfskontakt
7	PWM-Signal auf 5 %
8	Ladestrom auf 6 A
9	Ladestrom auf 10 A
10	Ladestrom auf 13 A
11	Ladestrom auf 16 A (Default für Eingang IN)
12	Ladestrom auf 20 A
13	Ladestrom auf 32 A
14	Ladestrom auf 63 A
15	Ladestrom auf 70 A
16	Freigabe Ladevorgang gepulstes Signal
17	Verriegelung (gepulstes Signal) (Default für Eingang ML)
18	Reserviert für zukünftige Funktion
19	Ladestrom auf zulässigen Maximalwert
20	Ladevorgang pausieren (OCPP: Suspend EVSE)
21	Fehlerzustand erzeugen

A Verzeichnisanhang

A 1 Abbildungsverzeichnis

Kapitel 3

Bild 3-2:	Bedienelemente und Anzeigen	15
Bild 3-3:	Abmessungen Ladesteuerung	17
Bild 3-4:	Abmessungen Messsensor	17

Kapitel 4

Montage auf Tragschiene19
Demontage von Tragschiene19
Anschluss Versorgungsspannung und Ladeschütz
Lastschützüberwachung mit Hilfskontakten21
Anschluss Strommesswandler für Differenzstromüberwachung23
Ladefall C, Ladestation mit Fahrzeug-Ladestecker
Ladefall B, Ladestation mit Infrastruktur-Ladedose
Anschluss Infrastruktur-Ladedose
Schalthysterese der digitalen Eingänge27
Beschaltung der digitalen Eingänge, interne Versorgung27
Beschaltung der digitalen Eingänge, externe Versorgung
Beschaltung der digitalen Ausgänge, interne Einspeisung 29
Beschaltung der digitalen Ausgänge, externe Einspeisung
Anschluss des Energiemessgeräts EEM-350-D-MCB über RS-485 31
Anschluss des Energiemessgeräts EEM-EM357 über RS-485
Anschluss RFID-Kartenleser Quio QDE 950-4 über RS-485

Kapitel 6

Bild 6-1:	Control-Pilot-Signal	
Bild 6-2:	Typischer Verlauf des Control-Pilot-Signals	
Bild 6-3:	Aktivierungsmodus	40
Bild 6-4:	Proximity-Signal (Proximity Plug)	41

Kapitel 8

Bild 8-1:	Registerkarte "Status"	. 47
Bild 8-2:	Registerkarte "Network" für Ethernet-Kommunikation	. 52
Bild 8-3:	Registerkarte "Network" für Mobilfunk	. 54
Bild 8-4:	Registerkarte "Configuration"	. 57
Bild 8-5:	Registerkarte "Energy Meter" für EEM-350-D-MCB	. 61
Bild 8-6:	Registerkarte "Energy Meter" für EEM-EM357	. 62
Bild 8-7:	Registerkarte "Card Reader" für RFID-Leser QUIO QDE 950-4	. 65
Bild 8-8:	Registerkarte "Remote Control" (EV-CC3G /3G-XP)	. 67
Bild 8-9:	Registerkarte "Remote Control" (EV-CCETH /ETH-XP)	. 67

		benenverzeichnis	
Kapitel 2			
	Tabelle 2-1:	Schnittstellen	7
Kapitel 3			
	Tabelle 3-1:	Anschlüsse	13
	Tabelle 3-2:	DIP-Schalter	15
	Tabelle 3-3:	Anzeige-LEDs	16
	Tabelle 3-4:	Drehkodierschalter	16
	Tabelle 3-5:	Reset-Taster	16
Kapitel 5			
	Tabelle 5-1:	Kommunikationsschnittstellen	
Kapitel 6			
	Tabelle 6-1:	Fahrzeugstati nach IEC 61851-1	
	Tabelle 6-2:	Typischer Ablauf eines Ladevorgangs	
	Tabelle 6-3:	Steuerung des maximal entnehmbaren Ladestroms nach IEC 61851-1	
	Tabelle 6-4:	Kodierung des zulässigen Stroms zum Widerstandswert nach IEC 61851W1	41
Kapitel 7			
	Tabelle 7-1:	Schnittstellen	
	Tabelle 7-2:	Übersicht unterstützter OCPP-Operationen	

Tabelle 7-3:

A 2 Tabellenverzeichnis

Kapitel 8

Tabelle 8-1:	Registerkarte "Status"	. 47
Tabelle 8-2:	Konfigurationsoptionen der digitalen Eingänge	. 49
Tabelle 8-3:	Konfigurationsoptionen der digitalen Ausgänge	. 50
Tabelle 8-4:	Schnittstellen	. 52
Tabelle 8-5:	Registerkarte "Network" für Ethernet	. 52
Tabelle 8-6:	Schnittstellen	. 54
Tabelle 8-7:	Registerkarte "Network (3G-Version)"	. 55
Tabelle 8-8:	Anzeigewerte Registerkarte "Configuration"	. 58
Tabelle 8-9:	Konfigurationsparameter Energiemessgerät	. 63
Tabelle 8-10:	Registerkarte "Energy Meter" - Anzeigewerte	. 64
Tabelle 8-11:	Anzeigewerte Registerkarte "Card Reader"	. 65
Tabelle 8-12:	Master-Slave-Verbund	. 67
Tabelle 8-13:	Registerkarte "Remote Control"	. 68

Kapitel 9

Tabelle 9-1:	Modbus-Registerarten	70
Tabelle 9-2:	Registerzuordnung, Typ Input	71
Tabelle 9-3:	Registerzuordnung, Typ Discrete	74
Tabelle 9-4:	Registerzuordnung, Typ Holding	74
Tabelle 9-5:	Registerzuordnung, Typ COIL	86
Tabelle 9-6:	Funktionszuordnung der digitalen Ausgänge	90
Tabelle 9-7:	Funktionszuordnung der digitalen Eingänge	91

A 3 Stichwortverzeichnis

А

Abmessungen	17
Anschlüsse	13
Anzeigen	15

В

Bedienelemente	15
Bestelldaten	8
Bestimmungsgerechte Verwendung	5

С

Card Reader (Registerkarte)	65
COIL (Registerzuordnung)	86
Configuration (Registerkarte)	57
Control-Pilot-Signal	36

D

Digitalen Ausgänge beschalten	29
Digitalen Eingänge beschalten	27
Discrete (Registerzuordnung)	74

Е

Energy Meter (Registerkarte)	60
Entsorgung	6

F

Fahrzeug-Ladestecker anschließen	24

Η

Holding (Registerzuordnung)	74
I	
Input (Registerzuordnung)	71

Κ

Konformitätserklärung	12
L	
Ladeschütz anschließen	21
Lastmanagement	68

М

Mobilfunk-Schnittstelle	35
Modbus-Registerarten	70

Ν

Network (Registerkarte) - Ethernet	52
Network (Registerkarte) - Mobilfunk	54

0

OCPP-Backend-Anbindung	42
OCPP-Ladeprofile	69

Ρ

```
Proximity-Signal ...... 41
```

R

Remote Control (Registerkarte)	67
RFID-Kartenleser anschließen	33
RS-485-Schnittstelle	31

S

Status	47
Stilllegung	6
Strommesswandler anschließen	23

V

```
Versorgungsspannung anschließen ...... 20
```

W

Bitte beachten Sie folgende Hinweise

Allgemeine Nutzungsbedingungen für Technische Dokumentation

Phoenix Contact behält sich das Recht vor, die technische Dokumentation und die in den technischen Dokumentationen beschriebenen Produkte jederzeit ohne Vorankündigung zu ändern, zu korrigieren und/oder zu verbessern, soweit dies dem Anwender zumutbar ist. Dies gilt ebenfalls für Änderungen, die dem technischen Fortschritt dienen.

Der Erhalt von technischer Dokumentation (insbesondere von Benutzerdokumentation) begründet keine weitergehende Informationspflicht von Phoenix Contact über etwaige Änderungen der Produkte und/oder technischer Dokumentation. Sie sind dafür eigenverantwortlich, die Eignung und den Einsatzzweck der Produkte in der konkreten Anwendung, insbesondere im Hinblick auf die Befolgung der geltenden Normen und Gesetze, zu überprüfen. Sämtliche der technischen Dokumentation zu entnehmenden Informationen werden ohne jegliche ausdrückliche, konkludente oder stillschweigende Garantie erteilt.

Im Übrigen gelten ausschließlich die Regelungen der jeweils aktuellen Allgemeinen Geschäftsbedingungen von Phoenix Contact, insbesondere für eine etwaige Gewährleistungshaftung.

Dieses Handbuch ist einschließlich aller darin enthaltenen Abbildungen urheberrechtlich geschützt. Jegliche Veränderung des Inhaltes oder eine auszugsweise Veröffentlichung sind nicht erlaubt.

Phoenix Contact behält sich das Recht vor, für die hier verwendeten Produktkennzeichnungen von Phoenix Contact-Produkten eigene Schutzrechte anzumelden. Die Anmeldung von Schutzrechten hierauf durch Dritte ist verboten.

Andere Produktkennzeichnungen können gesetzlich geschützt sein, auch wenn sie nicht als solche markiert sind.

So erreichen Sie uns Internet Aktuelle Informationen zu Produkten von Phoenix Contact und zu unseren Allgemeinen Geschäftsbedingungen finden Sie im Internet unter: phoenixcontact.com. Stellen Sie sicher, dass Sie immer mit der aktuellen Dokumentation arbeiten. Diese steht unter der folgenden Adresse zum Download bereit: phoenixcontact.net/products. Ländervertretungen Bei Problemen, die Sie mit Hilfe dieser Dokumentation nicht lösen können, wenden Sie sich bitte an Ihre jeweilige Ländervertretung. Die Adresse erfahren Sie unter phoenixcontact.com. PHOENIX CONTACT GmbH & Co. KG Herausgeber Flachsmarktstraße 8 32825 Blomberg DEUTSCHLAND Wenn Sie Anregungen und Verbesserungsvorschläge zu Inhalt und Gestaltung unseres Handbuchs haben, würden wir uns freuen, wenn Sie uns Ihre Vorschläge zusenden an: tecdoc@phoenixcontact.com

PHOENIX CONTACT GmbH & Co. KG Flachsmarktstraße 8 32825 Blomberg, Germany Phone: +49 5235 3-00 Fax: +49 5235 3-41200 E-mail: info@phoenixcontact.com phoenixcontact.com

108191_de_04 Order No. —04